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Abstract

This paper documents that industrial robots enhance firms’ ability to reduce
operating costs, especially during periods of declining sales. Building on this, we
propose a firm-level measure of automation cost flexibility (ACF), which quantifies
a firm’s capacity to reduce operating costs through automation. Using this mea-
sure, we find that firms with greater ACF exhibit higher firm values. To establish
a causal effect of ACF on firm value, we employ: (i) a difference-in-differences
specification with a matching algorithm, and (ii) exploit the 2011 Thailand hard
drive crisis as an exogenous shock. The paper further reveals that the positive im-
pact of ACF is more pronounced for firms in highly competitive industries, those
facing significant competitive threats, industries with high strategic interactions,
and smaller firms. This suggests that cost flexibility encompasses a strategic di-
mension.
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1. Introduction

In today’s fast-changing business environment, a firm’s ability to adapt to varying mar-

ket conditions is essential for enhancing its value. Industrial robots and automation have

transformed production across numerous industries, influencing firms’ production methods,

labor dynamics, and capital costs. These technological advancements directly impact a firm’s

capacity to respond to rapidly changing market conditions. Addressing the importance of au-

tomation in achieving cost efficiency, this study introduces a novel measure of automation cost

flexibility and examines its role in firm valuation.

We first investigate the benefits of industrial robots on operating costs through regres-

sions of operating costs on industrial robots. Building on this, we introduce a firm-level time-

varying measure of automation cost flexibility that captures a firm’s ability to lower operating

costs through automation. We then analyze the impact of automation cost flexibility on firm

value and explore how this effect varies across firms.

Keynes (1930) was among the first economists to explore the potential impacts of techno-

logical advancements on labor, output, productivity, and economic growth. In recent years, ad-

vancements in automation and robotics have significantly transformed various industries and

reshaped business operations, capturing economists’ attention to study the broader effects of

technological innovation. Zeira (1998); Acemoglu and Autor (2011); Autor (2015); Acemoglu

and Restrepo (2018, 2020) document the impact of automation on employment, labor share,

wages, productivity, and growth.1

While the macroeconomic effects of technological innovations are well-documented, rela-

tively little research addresses their implications for firm-level financial outcomes. Recent

1Graetz and Michaels (2018), Humlum (2019), Acemoglu, Lelarge, and Restrepo (2020), and Koch,
Manuylov, and Smolka (2021) find evidence of decreasing labor shares among firms adopting robots
or computer numerically controlled (CNC) machinery in different countries. Acemoglu et al. (2020)
documents that while firm-level robot adoption correlates with declining labor and production worker
shares, it also corresponds with increased value added and productivity; overall employment grows
faster in firms adopting robots. Additionally, Acemoglu and Restrepo (2022) provide evidence of au-
tomation’s heterogeneous impact on workers of different skill levels, showing that employment and
wages declined for low-education workers in roles that automation could perform, whereas high-
education workers, unaffected by displacement, experienced real wage gains. Hubmer and Restrepo
(2024) finds that large firms, which automate more tasks, reduce the aggregate labor share, while
median-sized firms continue to rely on labor-intensive technologies.
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corporate finance studies primarily examine automation’s (i.e., labor-saving innovations) ef-

fects on capital structure, liquidity policies, and the costs of debt and equity (Cheng, Lyandres,

Zhou, and Zhou (2023), Qiu, Wan, and Wang (2024), Bates, Du, and Wang (2024), Conlon, Cot-

ter, and Ince (2024)).2

Many studies use proxies for automation (e.g., patents, the potential to replace labor with

automated capital) or assign industry-level information to firms. Since firm-level automation

data is unavailable in the United States, Bates et al. (2024) and Qiu et al. (2024) use occupa-

tional computerization probability and automation patents as proxies.3 Bates et al. (2024) find

that workforce automation potential enhances operating flexibility, allowing firms to reduce

precautionary cash holdings, while Qiu et al. (2024) document that labor-saving innovations

decrease wage rigidity, enabling firms to hold more financial leverage. Using industry-level

data on industrial robots, Conlon et al. (2024) show that robots lower firms’ operating leverage

and cost of equity.

However, no prior study directly quantifies a firm’s cost benefits from automation or ex-

amines its impact on firm value. This paper addresses this gap by introducing a firm-level

measure of automation cost flexibility and analyzing its effect on firm valuation. Specifically,

this study (i) documents that industrial robots reduce firms’ operating costs and increase cost

flexibility, (ii) introduces a novel measure of automation cost flexibility through regressions

of operating costs on industrial robots, (iii) assesses the impact of automation cost flexibility

on firm value, (iv) validates this measure and provides causal interpretation by examining its

effects on operational outcomes (e.g., employment, cost flexibility) and firm valuation, (v) uses

the Thailand hard drive crisis as an exogenous shock to test for causal impacts on automa-

tion costs, and (vi) highlights the importance of cross-sectional attributes in the relationship

2In asset pricing, Zhang (2019) uses the share of routine-task labor as a proxy for automation po-
tential and finds that firms with a higher share of routine tasks invest more in machinery during
unfavorable market conditions, allowing them to reduce operating costs and limit declines in market
value compared to peers, leading to lower expected stock returns. Lin, Palazzo, and Yang (2020) shows
that firms with older capital, being less flexible in technology upgrades, face higher risks from tech-
nological shocks, yielding significantly higher returns than firms with newer capital. Knesl (2023)
measures automation potential by the proportion of employees in routine-intensive occupations, doc-
umenting that firms with a greater share of displaceable labor are less exposed to technology shocks
and earn a premium of 4% per year.

3Cheng et al. (2023) uses firm-level panel data on industrial robot deployment in China, finding
that robot adoption increases leverage and reduces the cost of debt.
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between automation and firm value.

First, this paper documents the operating cost benefits of industrial robots (automation).

To do so, we build on the empirical models of Anderson, Banker, and Janakiraman (2003)

and Chen, Harford, and Kamara (2019). Anderson et al. (2003) introduce a model estimating

the response of SGA expenses to contemporaneous changes in sales revenue.4 Using the

approach from Anderson et al. (2003), Chen et al. (2019) examine how operating costs respond

to changes in sales revenue during periods of increasing and decreasing sales, finding that

costs are less responsive during sales declines, supporting the notion that operating costs

exhibit stickiness (inflexibility).

Following this framework, we introduce panel regressions of the logarithmic changes in

operating costs on logarithmic changes in industrial robots, including an interaction term

between changes in robots and a dummy variable for sales-decreasing periods, with sales

controlled. The results show a coefficient of -0.017 on changes in robots, and a combined effect

of -0.167 when the interaction term is included. This implies that in a sales-increasing period,

operating costs decrease by 0.017% for each 1% increase in industrial robots, while in a sales-

decreasing period, a 1% increase in robots corresponds to a 0.167% decrease in operating

costs. These findings demonstrate the operating cost flexibility provided by industrial robots

(automation).

Industrial robots reduce reliance on labor, a variable cost, and enable consistent, scalable

operations without the need for overtime, benefits, or layoffs during periods of low demand.

This efficiency allows firms to adjust production and operational costs more flexibly, especially

valuable when revenue is constrained.

Moreover, as industrial robots replace traditional machinery, they enhance a firm’s ability

to scale production up or down in response to fluctuating demand. Unlike traditional ma-

chinery, which requires significant upfront investment and incurs fixed costs regardless of

output, robots offer greater flexibility by lowering labor costs, minimizing waste, and optimiz-

4Banker and Johnston (1993), Noreen and Soderstrom (1994), Noreen and Soderstrom (1997), and
Balakrishnan, Petersen, and Soderstrom (2004) document asymmetric cost behavior in industries such
as airlines and hospitals. Anderson et al. (2003) extend this literature by introducing an empirical
model applicable across various firms and industries.
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ing production processes even in low-sales periods. Additionally, robots generally have lower

maintenance costs and longer lifespans compared to traditional machinery, which helps firms

reduce fixed costs and avoid expensive repairs or upgrades.5

Building on the asymmetric behavior of cost structures in response to changes in sales

revenue, Chen et al. (2019) introduce a firm-level measure of operating cost flexibility. This

measure is derived from regressions of the logarithmic changes in operating costs on the

logarithmic changes in sales and an interaction term between changes in sales and a sales-

decreasing period dummy. In this model, the sum of the coefficients represents a firm’s ability

to reduce operating costs during sales declines, where a higher value indicates greater flexi-

bility.6

Motivated by Chen et al. (2019) and the cost flexibility benefits of industrial robots, we

introduce a time-varying, firm-level measure of automation cost flexibility. This measure is

based on firm-specific time-series regressions of logarithmic changes in operating costs on log-

arithmic changes in industrial robots and an interaction term with a sales-decreasing dummy

variable, controlling for sales. In this framework, automation cost flexibility is the negative

sum of the coefficients on the robotics terms, representing a firm’s ability to reduce operating

costs through automation. A higher value indicates greater cost flexibility achieved via au-

tomation, particularly valuable during periods of declining sales. In other words, this measure

captures how effectively a firm leverages automation to enhance cost flexibility.7

We examine the characteristics of firms with varying levels of automation cost flexibil-

ity (ACF). Our analysis reveals that firms with higher ACF typically exhibit greater overall

5Robots offer substantial financial benefits by optimizing a firm’s cost structure. Robotics enable op-
erational flexibility, allowing firms to quickly adjust production in response to market demand changes
(Zeira, 1998; Autor, 2015; Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018, 2020).

6In a corporate finance context, Ince (2024) extends the model of Anderson et al. (2003) by incor-
porating federal-level regulatory restrictions and an interaction term with a sales-decreasing dummy.
Ince (2024) introduces a measure of regulatory inflexibility, where the sum of coefficients in firm-level
regressions of SGA expenses on regulatory restrictions reflects declining levels of regulatory cost flex-
ibility.

7A question arises when assigning industry-level robotics data to firm-level analysis and estimat-
ing automation cost flexibility (ACF) using firm-specific regressions of cost structures on industry-level
robotics. While a firm’s robot adoption increases the industry’s total robotics stock, this does not neces-
sarily imply proportional changes in other firms’ robotics. However, one firm’s robot adoption can still
influence the cost structures of other firms in the industry. Section 3.3 discusses potential channels
through which one firm’s adoption of robots may impact the cost structures of non-adopting firms.
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operating cost flexibility, larger asset bases, lower cash holdings, higher financial leverage,

and reduced capital expenditures. These findings align with those of Cheng et al. (2023) and

Bates et al. (2024), supporting the idea that industrial robots (automation) enhance operat-

ing flexibility, allowing firms to maintain lower cash reserves while assuming more financial

leverage.

Notably, while many firms exhibit positive ACF—indicating operational benefits from au-

tomation—some firms display negative ACF. This suggests that not all firms benefit equally

from automation; in some cases, adopting robots does not yield expected efficiencies and may

even introduce operational challenges. Negative ACF can occur when a firm’s existing oper-

ational structures do not align well with automation requirements, leading to inefficiencies

and added complexity. For example, firms with rigid organizational frameworks or those in

industries with volatile demand may struggle to integrate automation in ways that enhance

cost efficiency. Additionally, firms with limited capital reserves may find it challenging to

achieve economies of scale through automation, resulting in higher per-unit costs and dimin-

ished flexibility.

We introduce a validation test to assess whether our automation cost flexibility (ACF)

measure effectively captures a firm’s cost benefits from industrial robots. Specifically, we

analyze changes in firms’ employee counts and total operating cost flexibility (OCF; Chen

et al. (2019)) when they experience a significant increase in ACF, comparing these changes to

“matched” firms that do not experience such increases. Since industrial robots directly impact

labor needs, a substantial rise in ACF is expected to correlate with reductions in employee

numbers. In other words, if ACF accurately reflects a firm’s cost benefits from automation, we

would expect to see a decrease in its workforce. Additionally, we hypothesize that increased

automation cost flexibility will contribute to a firm’s overall OCF, reflecting its ability to re-

duce costs during sales downturns, a pattern not anticipated in the comparison group.

To test this, we match firms with a substantial ACF increase to firms with similar char-

acteristics (e.g., capital expenditures, fixed assets, employee count) but without a comparable

ACF increase. This approach allows us to examine changes in employment and OCF between

otherwise comparable firms, with the significant ACF increase as the distinguishing factor for
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“treated” firms. Our findings show that, on average, employment in “treated” firms declines

significantly post-event, while employment in “matched” firms increases over the same pe-

riod. Additionally, OCF rises sharply in “treated” firms post-event, while it remains stable in

“matched” firms. These results suggest that automation cost flexibility reduces workforce size

and enhances overall operating cost flexibility, supporting the validity of our ACF measure.

We examine the impact of firm-level automation cost flexibility on firm value, measured

by Tobin’s Q. Our findings indicate that firms with greater automation cost flexibility tend

to have higher values, suggesting that cost flexibility from automation enhances firm value.

These results remain robust even when controlling for operating cost flexibility (Chen et al.

(2019)) and changes in industrial robots, highlighting that the impact of automation cost flex-

ibility on firm value is distinct from both the sensitivity of operating costs to sales fluctuations

(operating cost flexibility) and from mere increases in robotic adoption. This implies that in-

vestors value a firm’s ability to reduce operating costs specifically through automation, rather

than a firm’s overall cost flexibility or its level of robotics adoption.

One potential concern is that the positive impact of automation cost flexibility on value

might be driven primarily by large firms, given their greater resources for automation in-

vestment. To address this, we conduct additional analyses, excluding the largest firms (top 10

percent and 20 percent by asset size). The results remain positive and statistically significant,

suggesting that this relationship is not solely attributable to the largest firms. Similarly, one

might argue that the smallest firms, with potentially limited resources, could exhibit different

patterns of automation cost flexibility. To test this, we exclude firms in the bottom 10 percent

and 20 percent by asset size. Our findings remain robust, confirming that the positive impact

of automation cost flexibility on firm value is not limited to the smallest firms alone.

To further validate the firm-level measure of automation cost flexibility (ACF) and estab-

lish a causal effect of ACF on firm value, we implement a difference-in-differences analysis

on a sample of ”treated” firms and their matched counterparts. In the matching process, each

treated firm (with a significant increase in ACF) is paired with a firm that does not experience

a similar increase in ACF but shares key characteristics, such as size, capital expenditure,

age, leverage, cash holdings, R&D intensity, profitability, sales growth, fixed assets, and num-
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ber of employees, using the minimum Mahalanobis distance method. Our results show that

treated firms experience a 13.4% increase in Tobin’s Q over the same period relative to their

matched counterparts. This finding not only supports the validity of the ACF measure but

also provides causal evidence of the positive impact of ACF on firm value.

To further investigate the causal relationship between automation cost flexibility and firm

value, we follow Bates et al. (2024) and leverage the 2011 Thailand hard drive crisis as an

exogenous shock. Thailand is a key global hub for manufacturing electronic components es-

sential for automation systems. Severe flooding in 2011 led to a global shortage of hard drives

and a spike in prices, thereby raising automation costs for firms and industries dependent on

these components. We use the 2011 Thailand flooding as an exogenous shock, as it did not

directly affect U.S. firms’ value but indirectly impacted those reliant on electronic components

by increasing automation costs (e.g., maintaining or adapting operations). This strengthens

the exogeneity argument, as any observed changes in firm value are likely due to firms’ au-

tomation cost flexibility rather than other endogenous factors. Our findings indicate that the

previously positive relationship between automation cost flexibility and firm value turns sig-

nificantly negative during the crisis, providing causal evidence that automation cost flexibility

directly influences firm value.

To strengthen the causal relationship and ensure the parallel trend assumption, we exam-

ine the dynamic impact of the Thailand crisis. Firm valuation shows no significant difference

before the shock, and a negative impact is observed on firm valuation in the year of the shock,

corresponding with the spike in hard drive prices. This effect diminishes as hard drive prices

gradually return to pre-crisis levels. Roberts and Whited (2013) discuss using a difference-

in-differences analysis on pre-event years as a falsification test to ensure internal validity.

In this context, the methodology involves making a false assumption that the flooding takes

place before its actual occurrence in 2011 and assigning a value of one to the flooding dummy

variable based on this false assumption. The interaction terms between this dummy vari-

able and the automation cost flexibility are highly insignificant. Similarly, when assigning a

value of one to the flooding dummy variable for the years following the flooding, the estimated

coefficients on the interaction terms are insignificant.
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We also investigate the cross-sectional heterogeneities in the impact of automation cost

flexibility on firm values. In particular, we explore how industry competition, product market

threats, strategic interactions within industries, and firm size impact the effect of automation

cost flexibility on firm value. First, the positive effect of automation cost flexibility is more

pronounced on firms in highly competitive industries, that face more competitive threats in

their product markets, and in industries with greater market leadership turnover rates, in-

dicating strategic rivalry within an industry. These results are consistent with the idea that

automaton cost flexibility creates a strategic advantage to the firms that face competitive

pressure in product markets. Second, the effect of automation cost flexibility on firm values is

greater for smaller firms and firms with smaller market shares, suggesting that automation

creates cost flexibility to firms that are more likely to be financially constrained.

The rest of the paper is organized as follows. The next subsection reviews the literature

and discusses the contribution of this paper to the existing literature. Section 2 describes

the data and variables. Section 3 examines the relationship between automation and firms’

operating costs, introduces a firm-specific automation cost flexibility measure, and provides

descriptive statistics along with a validation test. Section 4 explores the impact of automation

cost flexibility on firm value. Section 5 presents cross-sectional heterogeneity in the impact of

automation cost flexibility. Section 6 concludes the paper.

1.1. Literature review

This paper is related to finance and accounting literature documenting asymmetric (sticky)

cost behavior with respect to sales revenue and corporate-level characteristics. Early stud-

ies by Banker and Johnston (1993), Noreen and Soderstrom (1994), Noreen and Soderstrom

(1997), and Balakrishnan et al. (2004) provide evidence for industry-specific asymmetric cost

behaviors. Anderson et al. (2003) introduce an empirical model relating changes in SG&A ex-

penses to sales revenue, applicable at the firm level. They find that SG&A expenses increase

significantly during sales-increasing periods, but decrease less during sales-decreasing peri-

ods. This provides evidence for the asymmetric (sticky) cost behavior. Anderson et al. (2003)

further introduce interaction terms between: i) a dummy variable indicating a sales revenue
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decrease, sales growth, and asset intensity (asset to sales revenue) and ii) a dummy vari-

able indicating a sales revenue decrease, sales growth, employee intensity (employee to sales

revenue) as independent variables. They find significant and negative coefficients on both

interaction terms, suggesting that costs are stickier for firms with greater asset and employee

intensity. Employing a similar empirical model to Anderson et al. (2003) in a corporate gover-

nance framework, Chen, Lu, and Sougiannis (2012) find greater cost asymmetry among firms

whose managers have higher incentives to build empires.

In a corporate finance context, Chen et al. (2019) estimate the sensitivity of operating costs

(Cost of Goods Sold (COGS) plus Selling, General, and Administrative (SG&A) expenses) to

the changes in sales revenues during sales-increasing and sales-decreasing periods. They

estimate firm-specific time-series regressions of logarithmic changes in operating costs on

logarithmic changes in sales revenue and introduce a firm-level measure of operating cost

flexibility, quantifying a firm’s ability to decrease its costs in a sales-decreasing period. They

find a positive association between operating cost flexibility and a firm’s financial leverage,

suggesting that operating flexibility enables firms to use greater financial leverage. More

recently, Ince (2024) employs a variant of Anderson et al. (2003), introducing logarithmic

changes in regulatory restrictions and an interaction term between changes in regulations

and a sales-decreasing period dummy variable. Ince (2024) offers a firm-level measure of

regulatory cost inflexibility (the sum of the coefficients on the regulations-related variables),

representing a firm’s ability to cut regulatory-driven costs in a sales-decreasing period.

While the literature identifies various factors constraining cost structures and contribut-

ing to cost stickiness, including asset intensity, employee intensity, corporate governance re-

lated, and regulations, this paper is one of the first to identify a factor that decreases firms’

cost stickiness and enhances operating flexibility. We show that industrial robots (automa-

tion), a form of tangible assets, improve firms’ ability to cut operating costs both in sales-

increasing and sales-decreasing periods, thereby enhancing operating cost flexibility. Build-

ing on this finding, we propose a firm-level measure of automation cost flexibility, quantifying

a firm’s capability to reduce operating costs as a result of automation.

This paper also relates to the growing literature on automation and its impact on firm-

10



level outcomes. In corporate finance literature, existing studies often use proxies for au-

tomation to investigate their effects on financial variables such as wage rigidity, operating

leverage, cash holdings, financial leverage, cost of debt, and cost of equity. Cheng et al. (2023)

find that robot adoption increases leverage and reduces the cost of debt in China by provid-

ing a hedge against labor cost fluctuations. Exploiting automation-related patents as a proxy

for labor-saving innovations, Qiu et al. (2024) document that such innovations reduce wage

rigidity and allow firms to increase financial leverage. While doing so, they exploit industry-

level robots data from EURO5 countries (Denmark, Finland, France, Italy, and Sweden) as

an instrumental variable for US firms.

Bates et al. (2024) use the occupational probability of computerization as a measure of au-

tomation, matching industry-level automation information to firms. They find that automa-

tion brings operating flexibility, allowing firms to hold less precautionary cash.8 To provide

a causal interpretation, they exploit the 2011 Thailand flooding as an exogenous shock to

hard drive supply and automation costs. Conlon et al. (2024) assign industry-level industrial

robotics data to firms, documenting that robots reduce a firm’s labor and non-labor (produc-

tion) operating leverage and exposure to systematic risks. Hence, robots decrease a firm’s cost

of equity. Similarly, Yanguang (2024) matches industry-level robotics information to firms and

investigates the impact of robots on corporate financial policies. As industrial robots decrease

operating leverage, they lead to higher financial leverage and lower cash holdings.

Given the lack of firm-level robotics and automation data in the United States, most stud-

ies either introduce proxies for automation and/or match industry-level robotics information

to firms. These proxies include the number of automation-based patents, routine and non-

routine tasks, and the share of displaceable labor. In this paper, we match industry-level

robotics data to firms and estimate sensitivity of each firm’s cost structure to the changes in

industry-level robots. This methodology generates a direct measure of robotics sensitivity at

the firm level in the United States, which we term “automation cost flexibility”.

Additionally, most studies in the finance literature focus on the impact of automation

8While doing so, Bates et al. (2024) do not provide a direct test on the impact of automation on
operating flexibility.
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on corporate financial policies (e.g., financial leverage and cash holdings) and cost of capital

(e.g.., equity and debt).9 While doing so, they primarily motivate their findings through labor

benefits of automation. More specifically, as automation substitutes for labor, it decreases

wage rigidity and operating leverage. Put differently, the existing corporate finance literature

focuses on the “displacement effect” of automation. However, as documented by macroeco-

nomics literature, industrial robots and automation can also increase the demand for labor

and employment through “productivity” and “reinstatement” effects.10 In other words, while

automation might decrease labor demand, reduce the number of employees, and lower wage

rigidity for some firms, it might have different effects for other firms. Our methodology allows

to capture the diverse cost flexibility implications of industrial robots. Then, adding to the

literature, we investigate the impact of firm-level automation cost flexibility on a firm’s value

and further explore the cross-sectional variation in the impact of automation cost flexibility.

2. Data and variables

2.1. Industrial robots

Our study focuses on the impact of automation cost flexibility on firms’ values. To do

so, we introduce a firm-level measure of automation cost flexibility by estimating firm-level

sensitivity of logarithmic changes in costs to changes in industrial robots. Section 3 provides

detailed information on the construction of the automation cost flexibility measure.

9In a recent study, Babina, Fedyk, He, and Hodson (2024) investigate the impact of artificial intel-
ligence on a firm’s growth by exploiting employee resume data and introducing a proxy for firm-level
AI investments. They find that AI drives firm growth by: i) reducing product innovation costs and ii)
lowering operating costs.

10Acemoglu and Restrepo (2020) propose displacement, productivity, and reinstatement effects as
three channels through which automation affects tasks, labor, and productivity. According to the
“displacement effect”, as industrial robots replace workers in tasks that human workers previously
performed, they decrease employment and labor share. The “productivity effect” refers to the chan-
nel that as automation enhances productivity by lowering the costs of tasks, performing tasks faster
and accurately, contributing to the speed and efficiency, automation leads to an increased demand for
labor in non-automated tasks over the long run. According to the “reinstatement effect”, automation
not only impact the demand for labor existing jobs, it can also create new tasks (i.e., programming,
designing, and maintaining high-tech equipment, such as software and application development) and
create demand for new jobs that did not exist before.
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To investigate the importance of automation cost flexibility on firm valuation, first, we

need to quantify automation usage. There, we rely on operational industrial robotics stock

measure provided by the International Federation of Robotics (IFR). The IFR defines an in-

dustrial robot (based on the definition of the ISO) as “an automatically controlled, repro-

grammable, and multipurpose [machine]” (IFR, 2014). That is, industrial robots are fully

autonomous machines that do not need a human operator and can be programmed to perform

several manual tasks, such as welding, painting, assembly, handling materials, and packag-

ing.

The IFR provides two sets of industrial robots data at the industry level (ISIC, Interna-

tional Standard Industrial Classification codes) starting from 2004: i) robotics installation,

ii) operational robotics stock. While robotics installation refers to newly installed industrial

robotics by an industry in a given year, operational robotics stock is the number of total robots

in an industry that are ready to perform tasks. Put differently, while robotics installation is

a flow variable, operational robotics is a stock variable. There is consistent data for 4 broad

industries: i) manufacturing, ii) mining and quarrying, iii) construction, and iv) education,

research, and development. Within manufacturing industry, there is detailed data for a set

of 13 industries, roughly at the three-digit level. Figure 1 plots the number of aggregate and

manufacturing industry-based robotics adoption from 2004 to 2021. Panel A (B) reports the

number of newly installed robotics (currently deployed robots).

[Fig. 1 about here.]

The blue lines plot the number of aggregate robotics installation and operational stock in

the United States in a given year, whereas the red lines plot the number of robots adopted

by the manufacturing industry. Panel A shows that while the rate of robotics installation

fluctuates over time, the overall trend is increasing. However, the graph hints a decreasing

trend throughout the period following the 2007-2008 Global Financial Crisis. Additionally,

there is an observable decrease in robotics installation around the COVID-19 pandemic era.

Panel A suggests that manufacturing is the industry installing the greatest portion of aggre-

gate robotics installations. Panel B documents the operational robotics stock of all industries
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and manufacturing industry. The panel hints that number of newly installed robots is greater

than number of robots getting obsolete in all years so that operational robotics stock reflects a

monotonic increasing trend. Consistent with Panel A, manufacturing is the industry employ-

ing and operating the greatest portion of industrial robots. Figure 1 clearly suggests that the

role (portion) of industrial robots has been increasing significantly throughout the years and

this is expected to bring important firm-, industry-, and aggregate-level outcomes.

To provide a better understanding of industry-level robotics adoption and cross-industry

differences, Table 1 reports four main industries and the subindustries within the manufac-

turing industry, their ISIC codes and parents codes, and the time-series averages of selected

moments (mean, standard deviation, minimum, and maximum) of industry-level industrial

robotics stock.11 The first row of Table 1 reports the robotics information at the aggregate

level, the parent of all industries. The time-series average of industrial robotics stock is

214,619 with a minimum of 123,663 (in year 2004) and a maximum of 340,785 (in year 2021).

[Table 1 about here.]

Manufacturing, mining and quarrying, construction, education, and research, and devel-

opment industries have ISIC codes of D, C, F, and P, respectively and they all have the parent

code of 0.12 Consistent with Figure 1, manufacturing industry is employing the greatest por-

tion of industrial robots. The manufacturing industry is divided into subindustries including

food and beverages; textiles; wood and furniture; paper and printing; plastics and chemical

products; other chemical productions; rubber and plastic products; metals; automotive; other

vehicles; all other manufacturing branches, where all these industries have the parent code of

D. Further, plastics and chemical products, metals, and automotive industries are subdivided

into industries with finer level data. Automotive, metals, and plastic and chemical products

11The IFR provides industry-level robotics adoption information at the industry level using Inter-
national Standard Industrial Classification (ISIC). Since firm-level ISIC code information is not avail-
able at Compustat, we match ISIC codes with SIC-2 level industry classification (Standard Industry
Classification) codes. For this purpose, we use the matching methodology developed by a working
group including Eurostat, Instituto Nacional de Estadı́stica y Geografı́a (INEGI), Statistics Canada,
the United Nations Statistics Division (UNSD), and the United States Economic Classification Policy
Committee (ECPC). For a detailed explanation, see https://mdgs.un.org/unsd/classifications/.

12While the main four industries constitute a significant portion of all robots installed and deployed
at the aggregate level, nearly 10 percent of the total robotics are operated by “undefined” industries.
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are the industries with the greatest robotics stock with time-series averages of 80,947, 14,745,

and 13,802, respectively. Within automotive (metals) industry, motor vehicles (electrical and

electronics) is the one employing industrial robots the most. Finally, while mining and quarry-

ing, construction, and education, research, and development industries’ robotics adoption has

increased over time, they employ significantly fewer robots compared to the manufacturing

industry.

2.2. Tobin’s Q and other variables

We use Tobin’s Q, the ratio of market value of assets to book value of assets, to measure a

firm’s value. We compute Tobin’s Q following the definition of Kaplan and Zingales (1997) and

bound it above at 10 by dividing the market value of assets by the sum of 0.1 multiplied by

the market value of assets and 0.9 multiplied by the book value of assets, to reduce the effect

of potential measurement error in the book value of assets (Ozbas and Scharfstein, 2010).

The market value of assets is equal to the book value of assets (AT) plus the market value of

common equity (CSHO x PRCC F) less the book value of common equity (CEQ) and balance

sheet deferred taxes (TXDB).

We control for independent variables that might impact firm value, such as firm size, firm

age, leverage, cash holdings, R&D intensity, profitability, capital expenditure, sales growth,

fixed asset to total assets, and number of employees (Buchanan, Cao, and Chen, 2018). Specif-

ically, we define firm size as the natural logarithm of the book value of assets and firm age as

the natural logarithm of one plus the number of years since the firm is first listed in Compus-

tat. Capital expenditure is total capital expenditures scaled by the book value of total assets.

Market leverage is defined as total book debt divided by total book debt plus the market value

of equity. We measure cash holdings as cash divided by total assets. We measure R&D in-

tensity as research and development expense to total book asset ratio, we set research and

development expense to zero when it is missing. We define profitability as the ratio of net

income to book value of equity. Sales growth is current sales divided by previous year’s sales

minus one. We measure fixed assets to book asset as the ratio of property, plant, and equip-

ment to book value of total assets. We take the natural logarithm of number of employees.
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All continuous variables are winsorized at the 0.5% level to eliminate the impact of extreme

outliers.

3. A new measure: automation cost flexibility

3.1. Operating flexibility

To quantify operating leverage and analyze its impact on profitability and default risk,

Chen et al. (2019) estimate the response of cost structures to the changes in sales revenue.

Specifically, they find that, on average, firms adjust their COGS by 0.86% and their SG&A

expenses by 0.41% in response to a 1% decrease in sales revenue. This implies that SG&A

expenses are highly fixed and sticky compared to COGS. Hence, they use SG&A expenses

scaled by total assets to quantify operating leverage.

Further, Chen et al. (2019) introduce a firm-level measure of operating cost flexibility

through firm-specific time-series regressions of logarithmic changes in operating costs on log-

arithmic changes in sales revenue:

log[
COSTSi,t

COSTSi,t−1
] = β0,i,t+β1,i,t∗log[

SALEi,t

SALEi,t−1
]+β2,i,t∗Decrease−Dummyi,t∗log[

SALEi,t

SALEi,t−1
]+ϵi,t

(1)

where COSTS is the sum of COGS and SG&A expenses and Decrease − Dummyi,t is a

dummy variable that takes a value of 1 if the firm i’s sales revenue decreases from time

period t-1 to t, and 0 otherwise. Operating cost flexibility measure is equal to the sum of the

coefficient on the logarithmic changes in sales (β1) and the coefficient on the interaction term

between the changes in sales and the dummy variable that indicates a sales-decreasing period

(β2). The operating cost flexibility measure quantifies the percentage change in operating

costs for each 1% decrease in sales revenues where a greater value of flexibility implies greater

adjustment flexibility. Put differently, operating cost flexibility measures the degree that a

firm can cut its operating costs in a sales-decreasing period.
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3.2. Automation cost flexibility

We investigate the sensitivity of operating costs to the changes in sales and industrial

robots at the firm-level and quantify the response of operating costs to the changes in sales

and industrial robots. Building on the empirical models of Anderson et al. (2003) and Chen

et al. (2019), we add the logarithmic changes in industry-specific yearly-varying robotics op-

erational stock and an interaction term between a sales-decreasing dummy variable and the

changes in robotics to Equation 1:

log[
COSTSi,t

COSTSi,t−1
] = β0 + β1 ∗ log[

SALEi,t

SALEi,t−1
] + β2 ∗Decrease−Dummyi,t ∗ log[

SALEi,t

SALEi,t−1
]

+ β3 ∗ log[
ROBOTSi,t

ROBOTSj,t−1
] + β4 ∗Decrease−Dummyi,t ∗ log[

ROBOTSj,t

ROBOTSj,t−1
] + αj + αt + ϵj,t

(2)

Here, subscript i, j, and t denote firm, industry (based on two-digit SIC grouping), and

year, respectively; αj and αt are industry- and year-fixed effects. The dependent variable,

COSTSi,t, is the sum of COGS and SG&A expenses incurred by firm i at year t, SALEi,t is the

sales revenue generated by firm i at year t, and ROBOTSj,t is the total number of operational

robotics stock of the industry j that firm i belongs to at year t.

Table 2 reports the results of estimating Equation 2 for the pooled sample. Column 1

reports univariate regression results estimating the sensitivity of changes in total operating

costs to the changes in sales volume. The estimated coefficient on the logarithmic changes

in the sales (β1 = 0.209) implies that, if the relation between costs and volume is symmetric,

operating costs increase (decrease) on average 0.209% per 1% increase (decrease) in sales. Col-

umn 2 adds the interaction term between logarithmic changes in sales and a dummy variable

that indicates decreasing sales volume from time period t-1 to t (Decrease-Dummy). As the

dummy variable takes a value of 0 when sales revenue increases, the coefficient β1 estimates

the percentage increase in operating costs associated with a 1% increase in sales. On the other

hand, as the dummy variable takes a value of 1 when revenue decreases, β1 + β2 quantifies
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the percentage change in operating costs as a response to a 1% decrease in sales. Column 2

reports an estimated value of β1 of 0.216 indicating that operating costs increase by 0.216% if

the sales revenue increase by 1%. The estimated coefficient of -0.015 on the decrease dummy

variable provides consistent findings to the sticky costs hypothesis. The summed value of β1

+ β2 = 0.201 indicates that operating costs decrease on average by 0.201% per 1% decrease

in sales revenue. Column 3 adds the changes in operational robotics stock to the regression

specification. Put differently, it investigates the sensitivity of operating costs to a 1% change

in robotics stock while controlling for the changes in sales revenue and asymmetric cost be-

havior of operating expenses. The estimated coefficient on the logarithmic changes in robotics

stock is -0.074 (β3 = -0.074) and it is statistically significant at the 1% level. This indicates

that operating expenses decrease on average 0.074% per 1% increase in robotics stock. Col-

umn 4 adds the interaction term between logarithmic changes in operational robotics stock

and Decrease-Dummy. The estimated coefficient of -0.017 on operational robotics stock (β3 =

-0.017) implies that, in a sales-increasing period, operating expenses decrease by 0.017% as

a response to 1% increase in industry-level industrial robotics stock. On the other hand, the

summed value of β3 + β4 = -0.167 indicates that operating expenses decrease by 0.167% per

1% increase in robotics during a sales-decreasing period. These results present that industrial

robots decrease operating expenses in both sales-increasing and sales-decreasing periods. 13

[Table 2 about here.]

As presented in Figure 1 and Table 1, since manufacturing industry employs the greatest

portion of industrial robots, we estimate Equation 2 for firm in manufacturing industries (SIC

13Adding to their empirical model, Anderson et al. (2003) introduce two interaction terms between:
i) dummy variable indicating a sales revenue decrease, sales growth, and asset intensity (asset to sales
revenue) and ii) dummy variable indicating a sales revenue decrease, sales growth, employee intensity
(employee to sales revenue) as independent variables. They find significant and negative coefficients
on both interaction terms suggesting that costs are stickier for firms with greater asset intensity and
employee intensity. Similarly, while testing the importance of corporate governance measures on the
asymmetric behavior of SG&A expenses, Chen et al. (2012) control for economic variables such as asset
intensity and employee intensity, and interaction terms such as Decrease Dummy*Sales Growth*Asset
Intensity and Decrease Dummy*Sales Growth*Employee Intensity. Our results are robust to adding
asset intensity, employee intensity, and the interaction terms between the sales dummy variable and
the mentioned variables. Industrial robots (automation) likely to affect firms’ asset intensity and
employee intensity. Hence, to capture the total effects of robots on firms’ cost structure, the main
regression models exclude asset intensity and employee intensity.
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codes between 2000-3999). In particular, Table IA.1 reports the OLS estimates of Equation 2

for firms in manufacturing industries and it presents similar results to our main findings as

in Table 2.14

3.3. Firm-level automation cost flexibility

Chen et al. (2019) introduce a firm-level measure of operating cost flexibility through

firm-specific time-series regressions of logarithmic changes in operating costs on logarith-

mic changes in sales revenue and an interaction term between changes in sales and a dummy

variable indicating a sales-decreasing period (Equation 1). Operating cost flexibility is equal

to the sum of the coefficients on the logarithmic changes in sales (β1) and on the interaction

term between the changes in sales and the dummy variable (β2). The operating cost flexibility

measure quantifies the percentage change in operating costs associated with 1% decrease in

sales revenues where a greater sum of the coefficients implies greater operating flexibility.

Following their methodology, we introduce firm-specific time-series regressions of logarithmic

changes in operating costs on logarithmic changes in sales revenue and logarithmic changes

in operational robotics stock, and the interaction terms between the mentioned variables and

Decrease-Dummy (dummy variable that indicates decreasing sales volume) using the 5 most

recent yearly observations:15

log[
COSTSi,t

COSTSi,t−1
] = β0,i,t+β1,i,t∗ log[

SALEi,t

SALEi,t−1
]+β2,i,t∗Decrease−Dummyi,t∗ log[

SALEi,t

SALEi,t−1
]

+ β3,i,t ∗ log[
ROBOTSj,t

ROBOTSj,t−1
] + β4,i,t ∗Decrease−Dummyi,t ∗ log[

ROBOTSj,t

ROBOTSj,t−1
] + ϵi,t (3)

and estimate firm-specific yearly-varying sales betas (β1,i,t and β2,i,t) and robotics sen-

14To examine the sensitivity of COGS and SG&A expenses separately and the sensitivity of employ-
ment to the changes in industrial robots, we estimate Equation 2 by employing the log changes in
COGS (Panel A of Table IA.2), log changes in SG&A expenses (Panel B of Table IA.2), and log changes
in employment (Panel C of Table IA.2) as dependent variables. Consistent with our main findings
(Table 2), industrial robots decrease COGS and SG&A expenses both in sales-increasing and sales-
decreasing periods. Panel C of Table IA.2 in the Internet Appendix displays that industrial robots also
decrease employment in both sales-increasing and sales-decreasing periods.

15We obtain similar results when we use 4-year or 6-year window to construct automation flexibility
measure.
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sitivity betas (β3,i,t and β4,i,t). Based on the estimated betas, we construct a firm-specific

time-varying automation cost flexibility (ACF) measure:

ACFi,t = −(β3,i,t + β4,i,t). (4)

ACF is defined as the negative of the sensitivity of changes in the operating expenses to

the changes in operational robotics stock in Equation 3. Put differently, ACF quantifies the

proportion of changes in operating costs attributable to the changes in industrial robots and a

firm’s ability to cut its operating costs. A higher value of ACF indicates a greater automation

cost flexibility.

A natural question arises when assigning industry-level robotics data to firm-level anal-

ysis and estimating firm-level automation cost flexibility (ACF) through firm-specific regres-

sions of cost structures on industry-level robot usage. As a firm installs or adopts robots, it

increases the industry’s overall robotics stock, but this does not necessarily mean that other

firms’ robotics stock changes at the same rate. However, this situation can still affect the cost

structures of other firms in the industry. Consider an industry with two firms: one adopts

new robots, while the other does not. The adoption of industrial robots by one firm can poten-

tially impact the cost structure of the non-adopting firm in several ways. Automation often

leads to lower production costs and increased efficiency for the adopting firm, allowing it to

offer products or services at lower prices or with higher quality. Competing firms may feel

pressured to adopt similar technologies to maintain market share and profitability; failing to

do so could result in losing customers to the more efficient competitor.

Additionally, non-adopting firms might have to lower their prices in response, which would

impact their profit margins unless they can similarly reduce costs through automation or

other means. To remain competitive, these firms might also need to invest more in their

human workforce, as labor costs are typically more ”sticky” than capital costs, making them

harder to adjust downward. This is particularly challenging during periods of reduced de-

mand, where a firm may struggle to quickly reduce labor costs, thereby constraining its cost

structures and limiting cost flexibility. Finally, the adoption of industrial robots by one firm
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can create technological spillovers that benefit others in the industry, even those that do not

adopt robots. For example, robot technology suppliers may enhance their products or lower

prices over time, indirectly impacting all firms within the industry.

3.4. Summary statistics

Table 3 reports the selected moments (mean, standard deviation, 10th percentile, 25th

percentile, 75th percentile, and 90th percentile) for three sets of variables: i) automation cost

flexibility, ii) operating cost flexibility, and iii) Tobin’s Q and the independent variables used

to estimate Tobin’s Q.

The first three rows document the statistics for the main automation cost flexibility mea-

sure (ACF, the negative of (β3 + β4)), β3, and β4, estimated through Equation 3. Automation

cost flexibility is the main variable of interest, indicating increasing (decreasing) operating

flexibility (inflexibility) brought by industrial robots (automation). β3 is the coefficient on the

logarithmic changes in the operational robotics stock in Equation 3, and β4 is the coefficient

on the interaction term between the logarithmic changes in robotics and the sales-decreasing

dummy variable.

[Table 3 about here.]

The first row presents the summary statistics for ACF. The mean, standard deviation,

10th percentile, 25th percentile, 75th percentile, and 90th percentile values for automation

cost flexibility are -0.037, 19.213, -5.792, -0.914, 0.636, and 4.957, respectively. The consider-

able differences between the moments indicate cross-sectional variation in firms’ automation

cost flexibility, quantifying their ability to decrease operating costs due to changes in indus-

trial robots. Additionally, β3 and β4 display similar distributions to the main measure of

automation cost flexibility and reflect significant cross-sectional differences.

Adding to Table 3, Figure 2 plots the 10th, 25th, 75th, and 90th percentiles of automation

cost flexibility from 2009 to 2021. By construction, the upper (lower) line plots the movements

in the 90th (10th) percentile, while the central lines sketch the 75th and 25th percentiles. No-
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ticeably, automation cost flexibility displays significant cross-sectional differences and time-

series volatility.

[Fig. 2 about here.]

The second set of variables includes operating cost flexibility (OCF, equal to the sum of

β1 and β2, estimated through Equation 3), β1, and β2. Operating cost flexibility measures

a firm’s ability to decrease its costs during a sales decline while controlling for logarithmic

changes in robots. It features considerably lower variance and narrower spreads between

their cross-sectional moments compared to those of automation cost flexibility. Other vari-

ables include Tobin’s Q, firm size, capital expenditures scaled by assets, natural logarithm

of firm age, market leverage, cash holdings, R&D intensity, profitability, sales growth, fixed

assets scaled by assets, and natural logarithm of the number of employees. These variables

display distributions similar to those reported in other studies.

3.5. Characteristics of firms with high vs. low automation cost flexibil-

ity

Table 3 and Figure 2 suggest that automation cost flexibility displays significant differ-

ences in the cross-section and fluctuates over time. Hence, firms with different levels of au-

tomation cost flexibility may significantly differ in their characteristics. Accordingly, Table 4

investigates the characteristics of firms with high vs. low automation cost flexibility.

To better understand the characteristics of firms with high vs. low automation cost flex-

ibility, Table 4 sorts firms based on their ACF in each financial year and assigns them into

tercile portfolios. The table reports the time-series averages of the mean values of firm-specific

characteristics of ACF sorted portfolios including “ACF” (automation cost flexibility, primary

variable introduced by this paper), “OCF” operating cost flexibility measure proposed by Chen

et al. (2019), “Asset” book value of assets, “Emp” number of employees, “Emp/sale” number

of employees divided by sales, “Cash” cash holdings scaled by the book value of assets, “Lev.”

market leverage, “CapEx/at” capital expenditure divided by the book value of total assets,
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“Tangibility” the ratio of property, plant, and equipment to book value of total assets, and

“Age” a firm’s age.

[Table 4 about here.]

The first column of Table 4 reports the time-series averages of ACF sorted tercile portfolios.

By construction, there is a monotonic increase from the lowest to the highest ACF tercile. The

ACF difference between the extreme terciles is 18.576 and statistically significant at the 1%

level.

The second column documents the time-series averages of operating cost flexibility (OCF)

of ACF-sorted portfolios. Following Chen et al. (2019), we estimate OCF through firm-specific

time-series regressions of logarithmic changes in operating costs on logarithmic changes in

sales and an interaction term between changes in sales and a decreasing sales dummy vari-

able (Equation 3 without the robotics terms). Put differently, OCF quantifies a firm’s total

operating cost flexibility, including potential flexibility brought by industrial robots, where a

higher value of OCF indicates greater adjustment flexibility. The time-series averages of OCF

for the lowest, medium, and highest AF terciles are 0.150, 0.694, and 0.863, respectively, with

the difference between the extreme terciles being highly significant. Specifically, while an

average high ACF firm can decrease its operating costs by 0.863% per 1% decrease in its sales

revenue, a low ACF firm can only decrease its costs by 0.150% for the same decrease in sales.

This suggests that firms with high ACF tend to have higher operating flexibility, supporting

the idea that firms’ automation cost flexibility enhances their operating cost flexibility. This

contributes to validating our automation cost flexibility measure.

The third column investigates the relation between ACF and and a firm’ asset value (in

millions $). Firms with high ACF are significantly larger than firms with low ACF. Invest-

ment capacity and economies of scale potentially contribute to this trend. Larger firms typ-

ically have greater financial resources and investment capacity, allowing them to invest in

advanced robotics technologies. This enables them to adopt and integrate flexible automation

more extensively throughout their operations. The significant size spread between the firms

with extreme ACF is consistent with Acemoglu, Anderson, Beede, Buffington, Childressm,
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Dinlersoz, Foster, Goldschlag, Haltiwanger, Kroff, Restrepo, and Zolas (2022). They estimate

that the largest firms in an industry are 1.7 times more likely to use automation technologies

than the median firms. Similarly, Humlum (2019), Acemoglu et al. (2020), and Koch et al.

(2021) provide international evidence for larger firms automating more compared to their

smaller counterparts. Hubmer and Restrepo (2024) document that larger firms adopt signif-

icantly more capital-intensive technologies for automation as their adoption and integration

require significant fixed costs.

Columns 4 and 5 report the number of employees and number of employees scaled by

sales for ACF sorted portfolios. Column 4 documents the relation between automation cost

flexibility and number of employees (EMP). There is a non-monotonic increase in employment

from the lowest to the highest portfolio, with a significant difference between the extreme

portfolios. When we scale number of employees by sales (Column 5), the difference between

the extreme portfolios becomes insignificant. This suggests that the significant spread in the

number of employees is highly driven by the size of the firms with low vs. high automation cost

flexibility. This verifies the idea that larger firms (firms with greater number of employees)

have more capacity to invest in robotics technologies.16

Column 6 presents the cash holdings of firms with different levels of ACF. The results

suggest that firms with high ACF hold significantly less cash than firms with low ACF. This

result is consistent with Bates et al. (2024) according to which firms with greater potential to

replace labor with automated capital tend to hold less precautionary cash. Column 7 suggests

that firms with high ACF hold greater leverage compared to the rest of the sample. This result

is consistent with Cheng et al. (2023) which finds that adoption of labor-replacing automation

technology in China increases financial leverage.17 Firms with greater automation cost flexi-

bility have a more variable cost structure, allowing them to adjust their expenses more easily

in response to changes in demand or market conditions. This flexibility can provide a buffer

against financial risk, potentially allowing the firm to take on more leverage with less risk of

16The results are similar when we scale number of employees by a firm’s asset value.
17Once we estimate panel regressions of market leverage on ACF, we find a positive and significant

coefficient on ACF. This suggests that firms with greater automation cost flexibility tend to hold higher
levels of leverage.
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default. The negative (positive) relationship between automation flexibility and cash holdings

(leverage), consistent with the existing literature, further contributes to the validation of our

measure.

Column 8 shows that firms with low ACF have significantly higher capital expenditures

compared to firms with medium and high ACF. While investment in industrial robots requires

greater capital expenditure at the beginning; automation often reduces the need for additional

capital investment to achieve the same level of output. With automation, firms can achieve

higher productivity with existing resources, thus lowering the requirement for additional cap-

ital expenditure. Additionally, automation allows for better utilization of existing resources,

including machinery, equipment, and labor. By optimizing resource allocation and reducing

waste, firms may be able to defer or avoid capital expenditures for expanding capacity or re-

placing outdated equipment. Automation systems are typically designed for reliability and

require less maintenance compared to manual processes or older equipment. Finally, greater

automation cost flexibility enables firms to reconfigure production processes more easily to

adapt to changing market conditions or product requirements. This flexibility can reduce the

need for specialized equipment or machinery, leading to lower capital expenditures.

Column 9 documents that firms with low ACF carry more tangible assets than firms with

medium and high ACF. First, firms investing in automation may prioritize spending on intan-

gible assets such as software, intellectual property, and data analytics capabilities rather than

traditional tangible assets like machinery and equipment. Second, by leveraging automation

to streamline processes, firms can achieve higher output with fewer physical resources, lead-

ing to a lower proportion of tangible assets relative to their total assets. Third, automation

technologies often enable firms to achieve higher asset turnover rates. As a result, firms may

require fewer tangible assets to support a given level of revenue or production output, leading

to a lower tangible asset base.

According to the last column, the average age for the lowest, medium, and the highest ACF

terciles are 20.48, 25.58, and 20.98, respectively. While firms with medium AF are the oldest,

there is a significant age difference between the lowest and the highest ACF firms, suggesting

that older firms might possess greater automation cost flexibility due to their accumulated
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experience, resources, adaptation strategies, strategic partnerships, cultural evolution, and

regulatory considerations.

3.6. Validation

To validate our firm-level ACF measure, we investigate the changes in employment and

operating cost flexibility (OCF) around the significant increase in a firm’s ACF measure

(“event time”) and compare these outcomes to a set of similar firms that do not experience

such a change. The idea is that significant jumps in a firm’s ACF measure should indicate

that the firm is investing in industrial robots (automation). This should be reflected in the

firm’s employment structure and total operating cost flexibility. Conversely, we would not ex-

pect significant changes in the characteristics of firms whose ACF measure does not reflect

substantial changes. Specifically, we define a significant increase in ACF at the firm level

when a firm’s ACF is below -5 (close to the 10th percentile of the ACF measure, as shown in

Table 3) in year t-1, and it is above +5 (close to the 90th percentile of the ACF measure, as

shown in Table 3) in year t. 18 According to this framework, the firms experiencing the signif-

icant increase are “treated” firms. From the set of non-treated firms, we construct a matching

sample of firms that are similar to the “treated” firms except for the significant change in

their ACF measure.

In particular, to identify the candidate “control” group, we calculate the annual change in

the ACF measure and the standard deviation of annual changes for each firm. Then, we rank

firms into five categories based on the standard deviation of annual changes in their ACF

measures and assign firms in the lowest rank as the set of candidate control firms. Then, for

each “treated” firm, we choose its nearest neighbor from the group of candidate control firms

that operate in the same industry (two-digit SIC code) in the same year. We match firms based

on all control variables in our main Tobin’s Q regression. Specifically, we match firms based

on their size (the natural logarithm of total assets), capital expenditure over total assets, age,

leverage, cash holding, R&D intensity, profitability, sales growth, fixed assets to total assets,

18142 firms in our sample experience such a significant increase in their ACF measure during the
sample period.
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and the natural logarithm of the number of employees. We use a matching algorithm that

simultaneously minimizes the Mahalanobis distance across all these matching characteristics

(Frésard and Valta, 2016; Seltzer, Starks, and Zhu, 2022).

After identifying firms with a significant increase in their ACF (“treated” firms) and con-

trol firms, we examine the fluctuations in their average employment (employment/sale) and

total operating cost flexibility (OCF) around the “event time”. Panel A and B of Figure 3 plot

the employment and OCF for the “treated” and “control” group from 2 years before to 2 years

after the “event time”.

[Fig. 3 about here.]

Panel A of Figure 3 shows that average employment experiences a significant decrease for

“treated” firms in the two subsequent years following the significant increase in their ACF

while average employment for the control group follows an increasing trend during the same

period. Additionally, the figure reveals similar trends right before the ”event time” and it

shows that the difference in employment between the ”treated” and control firms is increasing

after the ”event time”. The significant decrease in the number of employees for firms with the

largest increases in their automation flexibility can be explained by the displacement effect.

As industrial robots replace workers in tasks that human workers previously performed, they

decrease employment and labor share. In other words, as firms invest in industrial robots and

automation technologies, their need for human labor reduces.

Panel B of Figure 3 plots the average operating cost flexibility (OCF) measure introduced

by (Chen et al., 2019), which is the sum of the time series coefficients (β1+β2) estimated using

equation 3 without the robotics terms, for “treated” and control firms around the “event time”.

In this context, OCF is a firm’s total operating cost flexibility, accounting for the potential

flexibility benefits brought by automation. If automation cost flexibility indeed contributes to

total operating cost flexibility, we would expect a considerable jump in a firm’s OCF when its

automation cost flexibility increases significantly. Panel B provides supporting evidence. The

figure shows that while the mean OCF of the “treated” firms increases dramatically around

the “event time”, the mean OCF of the control firms remains stable throughout the same
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time period. This indicates that investments in automation (industrial robots) are positively

reflected in firms’ automation cost flexibility, and hence, in their operating cost flexibility.

Panel A and B of Figure 3 further validate our firm-level automation cost flexibility measure.

4. Automation cost flexibility and firm value

Our analysis so far presents the operating cost benefits of industrial robots, and we intro-

duce a measure of automation cost flexibility which reflects the importance of automation in

a firm’s ability to cut its operating costs. We expect that the cost benefits and flexibility led

by automation to create a higher firm value. To explore whether such a relation exists, we

estimate the impact of automation cost flexibility on firm value through the following specifi-

cation:

Tobin′s Qit = β1 ×ACF it + γX it + αi + αt + ϵit (5)

where subscripts i indexes firms, and t indexes time; αi and αt are firm and year fixed

effects. The dependent variable is Tobin’s Q. The main coefficient of interest is β1 which

captures the impact of automation cost flexibility on the firm value proxied by Tobin’s Q. The

vector Xit is a vector of control variables that may affect the firm value as described in Section

2.19 We report standard errors that are heteroscedasticity-consistent and clustered at the

firm level.

Table 5 presents the coefficient estimates. As described in Section 3, to create firm-level

ACF measure, we estimate firm-specific time series regressions over a five-year fixed window.

As a result, firm-specific time-varying automation flexibility measure starts in year 2009. In

columns 6 and 7, we fix firm-level ACF measure to its 2009 value for years between 2005

to 2009. The estimated coefficients on ACF are significantly positive in all specifications.

The coefficient on ACF is 0.001 and it is statistically significant at the 1% level in column 1

which accounts for firm-specific control variables and firm- and year-fixed effects. Using the

difference of 18.576 between the mean values of the highest and lowest terciles of ACF (Table

19We obtain similar results when we use lagged control variables.
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4), an estimated coefficient of 0.001 implies a higher firm value of 1.86% (18.576 x 0.001) for

the firms with high ACF compared to the firms with low ACF. Additionally, the coefficient

signs for the control variables are consistent with the existing empirical evidence.

[Table 5 about here.]

Next three columns add operating flexibility and automation related variables that could

potentially capture the channels through which automation cost flexibility impacts firm value.

Column 2 adds operating cost flexibility (OCF) measure introduced by Chen et al. (2019)

which is the sum of the time series coefficients (β1 + β2) estimated using Equation 3.20 While

the coefficient estimate on OCF is positive albeit insignificant, the coefficient on AF is 0.001

and statistically significant at the 1% level. This suggests that automation cost flexibility

contributes to a firm’s value which cannot be captured a firm’s operating cost flexibility. Col-

umn 3 includes logarithmic changes in industry (two-digit SIC)-level industrial robots as an

independent variable, while accounting for the full set of control variables in column 1. While

the coefficient estimate on ACF continues to be positive and significant, there is a negative

albeit insignificant relation between changes in robots and a firm’s value. This contributes to

the idea that the impact of a firm’s ability to cut its operating costs due to industrial robots is

distinct than a firm’s (or the industry it belongs to) operational robotics stock on its value. To

further validate our ACF measure and present the robustness of our results, column 4 adds

the measure of substitutability of labor with automated capital (SLAC) introduced by Bates

et al. (2024) to our main specification. Column 4 reports positive and significant (positive al-

beit insignificant) coefficient on ACF (SLAC). Columns 2, 3, and 4 provide evidence that the

positive and significant relation between ACF and firm value is not driven by operating cost

flexibility, changes in industrial robots, and alternative measure of automation.

To better interpret the economic magnitude of ACF on firm value, in columns 5 and 7, we

create a HighFlex dummy variable which takes a value of 1 if a firm’s ACF is in the first two

terciles of the yearly sample distribution, and 0 otherwise. Then, we reestimate the Equation

5 by replacing ACF measure with HighFlex dummy variable. In column 5, the coefficient on
20We obtain similar results when we estimate OCF separately without including industrial robots to

Equation 3.
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HighFlex dummy variable is 0.034 suggesting that firms with greater automation flexibility

have a 3.4% higher firm value and it is statistically significant at the 10% level. We obtain

similar findings in columns 6 and 7 when we fix a firm’s ACF value in 2009 for the years be-

tween 2005-2009. In summary, Table 5 provides evidence that firms with greater automation

cost flexibility have higher firm values.21

To ensure the results are not solely driven by either large or small firms—those with

greater or lower capability to adopt robots and automate processes—we exclude the largest

and smallest firms from our sample. The results remain robust even after excluding firms in

the top and bottom percentiles by asset value (i.e., the highest 10th and 20th percentiles, and

the lowest 10th and 20th percentiles).

4.1. Differences-in-differences validation

Section 3.6 proposes a validation test comparing the changes in number of employees and

total operating cost flexibility (OCF) of firms experiencing a major jump (from -5 to +5) in their

ACF (treated) to matched firms. As treated firms could significantly differ from non-treated

firms, we construct a sample of matched firms that have similar characteristics without a

significant increase in their ACF.22 Section 3.6 documents a significant decrease in number of

employees and increase in OCF for the treated firms, whereas there is an increase in employ-

ees and no significant change in OCF within the sample of matched firms.

To further validate our firm-level ACF measure and provide additional evidence that it is

the automation cost flexibility that impacts a firm’s value (Tobin’s Q), we estimate a difference-

in-differences version of our baseline specification (Equation 5) on a sample comprising only

“treated” and matched firms:

Tobin′s Qit = β1 × TreatAfterit + γX it + αi + αt + ϵit. (6)

21Since the manufacturing industry employs the greatest portion of industrial robots, we estimate
Equation 5 as in Table 5 for firms in manufacturing industries (SIC codes between 2000-3999). As
presented in Table IA.3 of the Internet Appendix, our results are economically larger within the sample
of manufacturing firms.

22Subsection 3.6 “Validation” explains the matching methodology.
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TreatAfterit is a dummy variable equal to one for the ”treated” firms (i.e., experiencing a

significant increase in their automation cost flexibility) for five years following the significant

increase in their ACF measure, and zero for the matched firms. The main coefficient of in-

terest is β1, which measures how on average ”treated” firms’ value changes compared to the

matched firms.

[Table 6 about here.]

Table 6 reports the regression results of estimating Equation 6. While accounting for the

full set of control variables, and firm- and year-fixed effects, the coefficient on β1 is 0.134 and

it is significant at 5% level. This indicates that firms with a significant jump in their ACF

generate 13.4% more value compared to their similar counterparts over the same period. As

this methodology controls for both observed and unobserved firm-specific and time-varying

factors, and ensures that treated firms are matched to similar counterparts, the analysis

establishes that the observed increase in Tobin’s Q is a causal effect of the significant rise

in automation cost flexibility. This evidence points to a direct link between automation cost

flexibility and the value creation, as reflected in the firm’s market valuation.

4.2. Thailand hard drive shock

To provide further evidence addressing potential endogeneity concerns and to establish a

causal relationship between automation cost flexibility and firm value, we follow Bates et al.

(2024) and use the 2011 Thailand hard drive crisis as an exogeneous shock. Thailand, a

major manufacturing hub for electronics, automotive, and computer hardware, is the world’s

second-largest hard drive producer after China. The severe flooding in 2011- one of Thailand’s

most severe natural disasters- disrupted the production of hard drives and other essential

electronic components used in automation systems, causing a global shortage and a surge in

prices for these automation-related products.23

23To illustrate, hard drive prices nearly doubled in 2011, then gradually declined and returned to
pre-flood levels in 2012. Figure 5 of Bates et al. (2024) provides evidence of price fluctuations from
2009 to 2015.
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The Thailand crisis primarily created a surge in specific input costs (i.e., hard drives and

technological components) rather than triggering a broad-based financial or economic crisis.

Firms heavily reliant on these components faced increased costs for maintaining or adapting

their operations, particularly through automation. However, unless a firm was especially

dependent on hard drives, the impact on its intrinsic value would be indirect—mainly through

the cost adjustments it would need to make to maintain productivity or adapt its technology

stack. As this crisis did not directly affect U.S. firms’ value but rather indirectly through

increased automation costs, it serves as an event that is entirely exogenous to U.S. firms and

unrelated to firm-specific characteristics. This framing ensures that any observed variation

in firm value due to the shock is likely mediated by the firm’s automation flexibility, not by

other endogenous factors.

The causal pathway is as follows: the Thailand crisis led to increased automation costs

worldwide, thereby influencing firm value through these higher costs. To test this prediction,

we estimate the following regression model exploiting the Thailand flooding as an exogenous

shock:

Tobin′s Qit = β1 ×ACF it +β2 ×Floodingt +β3 × (Floodingt ×ACF it)+ γX it +αi +αt + ϵit (7)

Subscripts i, and t represent firms, and time, respectively. The vector Xit includes the

control variables used in the main regression specifications. αi and αt are firm and year

fixed effects, respectively. Flooding is an indicator variable that is equal to one for the year

2011 representing the period of significant increase in automation as a result of Thailand

hard drive crisis. We adjust the standard errors for clustering at the firm level. The main

parameter of interest in Equation 7 is β3, the coefficient of the interaction term, (Floodingt x

ACFit).

Table 7 presents the regression results. In columns 3 and 4, firm-level ACF is fixed to

its 2009 value for the years between 2005 to 2009. Column 1 provides the benchmark spec-

ification, with a coefficient of -0.003 on the interaction term (Floodingt x ACFit), significant
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at the 10% level. Column 3 yields similar results, with the coefficient of interest β3 being is

significant at the 5% level. This indicates that the positive relationship between ACF and

firm value is mitigated during the crisis period.

[Table 7 about here.]

Columns 1 and 3 yield negative and significant coefficients on the interaction terms, pro-

viding further takeaways on the impact of automation cost flexibility (ACF) on firm value.

The regression specifications indicate a negative sum of the coefficients, β1 + β3, implying

that the usual positive relationship between ACF and firm value reverses during the crisis

period. Since the Thailand hard drive crisis did not directly affect U.S. firms’ value, this

negative relationship provides evidence that automation cost flexibility causally impacts firm

value through its role in responding to automation cost shocks.

Not all companies are equally affected by increased automation costs due to the component

shortage. The second part of our analyses focuses on firms in high-computerization industries,

where industrial robots heavily rely on computers for automation. Following Bates et al.

(2024), we calculate the ratio of investments in computers and peripheral equipment to total

investments in equipment and machinery using the 1997 Bureau of Economic Analysis (BEA)

capital flow table.24 We define industries with ratios above the median (estimated by Osborne

and Frey (2013); Frey and Osborne (2017)) as high computerization industries. Accordingly,

Column 2 modifies the Flooding dummy to be 1 for firms in these industries in 2011, and 0

otherwise. Column 4 fixes measure for the years between 2005 and 2009 to its 2009 value.

Moving from column 1 to 2, the estimated coefficient on the interaction term (Floodingt x

ACFit) becomes more negative, increasing in magnitude from -0.003 to -0.010 and becoming

statistically significant at the 5% level. Column 4, which fixes the ACF measure to 2009

values, yields similar results.25 These findings indicate that firms with high dependence on

24The BEA capital flow data is obtained at https://apps.bea.gov/industry/xls/flow1997.xls.
25As the manufacturing industry employs the greatest portion of industrial robots, we estimate

Equation 7 for the firms in manufacturing industries (SIC codes between 2000-3999). The results
are presented in Table IA.4 in the Internet Appendix. In columns 2 and 4, we follow Bates et al. (2024)
to identify industries that are expected to be affected more significantly within the manufacturing in-
dustry. Specifically, in columns 2 and 4, Flooding is equal to one for firms operating in industries that
rely more on computers systems based on the probability of computerization, estimated by Osborne
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computers and peripheral equipment experienced a more pronounced negative impact of ACF

on firm value.

Table 7 demonstrates that the Thailand hard drive crisis reversed the typical positive im-

pact of automation flexibility on firm value. During this crisis, firms with high automation

cost flexibility experienced a negative impact on value, suggesting that while ACF generally

enhances firm value, exogenous shocks that raise automation costs can temporarily coun-

teract these benefits. By utilizing the Thailand hard drive crisis as an exogenous shock to

automation costs, our results mitigate potential endogeneity concerns and support a causal

interpretation: it is the automation cost flexibility that affects firm value.

4.3. Testing for pretreatment trends

To further address potential endogeneity concerns and test the parallel trend assumption,

we analyze the dynamic effects of the Thailand shock by replacing the Flooding dummy vari-

able with three time-specific dummy variables: Before-1 to -3, set to one for 1 to 3 years prior to

the Thailand shock (2008, 2009, and 2010); Current0, set to one for the Thailand flooding year,

2011; and After1 to 2, set to one for the 1 to 2 years following the shock (2012 and 2013). The

coefficients on the interaction term (Before-1 to -3 x ACF) enable us to assess any pre-existing

trends before the Thailand crisis.

The results in Table 8 indicate no pre-existing trends in firm value before the Thailand

hard drive crisis, as the estimated coefficients on Before-1 to -3 x ACF are statistically in-

significant across all specifications. However, the coefficient estimates on Current0 x ACF

in columns 1 and 3 are both -0.003 and statistically significant at the 5% level, while the

estimates on After1 to 2 x ACF are insignificant. This pattern suggests that the significant

negative impact occurs only during the shock year, when hard drive prices spiked, while no

significant effect is observed in the following years as prices began to decline. Furthermore,

these results demonstrate that our continuous firm-level, time-varying ACF measure, derived

directly from industrial robot stock, is highly sensitive to changes in automation costs.

and Frey (2013); Frey and Osborne (2017) based on occupational characteristics and technological
developments, in year 2011 and zero otherwise. As the table reports, the estimated coefficients are
economically larger within the manufacturing industries.
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[Table 8 about here.]

As in Table 7, Columns 2 and 4 explore the dynamic impact of the Thailand shock specif-

ically for industries with a higher reliance on computers and peripheral equipment for au-

tomation. We construct Before-1 to -3, Current0, and After1 to 2 dummies and assign value of

one based on years as defined above but only for firms in industries with a higher probabil-

ity of computerization (based on the median value), estimated by Osborne and Frey (2013);

Frey and Osborne (2017), zero otherwise. The coefficients on Before-1 to -3 x ACF in columns

2 and 4 remain insignificant, while the coefficients on Current0 x ACF are -0.108 and -0.118,

respectively, both statistically significant at the 5% level. These findings suggest that firms

in more computerization-dependent industries experience a stronger negative impact from

rising hard drive prices.

The results in Table 8 show no significant differences before the Thailand shock, con-

firming that the parallel trends assumption holds. Additionally, we conduct placebo tests

by shifting the shock year to alternative years before and after 2011, consistently obtaining

insignificant results (not tabulated for brevity). These placebo tests support a causal inter-

pretation of the relationship between automation cost flexibility and firm value.26

These results reinforce the exogeneity of the Thailand shock in the difference-in-differences

framework. The absence of significant pretreatment effects (no pre-existing trends) suggests

that firm value trends were similar for firms with varying levels of automation flexibility be-

fore the crisis. This supports the parallel trends assumption, indicating that any changes ob-

served during the crisis year can be attributed to the shock rather than underlying differences

between the groups. Further, the analyses strengthen the causal interpretation, showing that

it is the automation cost flexibility that drives changes in firm value, rather than other en-

dogenous factors. The placebo tests further bolster this interpretation, as shifting the shock

year yields insignificant results, underscoring that the observed effects are uniquely tied to

the Thailand crisis and not to random temporal variations.

26Table IA.5 in the Internet Appendix presents similar results for firms in manufacturing industries
(SIC codes 2000-3999), further confirming that the parallel trends assumption holds for these firms as
well.
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5. Cross-sectional tests

In this section, we explore the cross-sectional heterogeneity of the sample to shed fur-

ther light on the effect of automation cost flexibility on firm value. To investigate the cross-

sectional variation, we divide our sample into subsamples based on industry or firm-level

characteristics. We then estimate Equation 5 for these subsamples and compare the coeffi-

cient estimates on ACF between them.

Our first set of tests focuses on how product market competition and strategic interactions

between firms impact the effect of automation cost flexibility on firm value. Firms facing con-

stant competitive risks and threats in product markets can use financial or operating flexibil-

ity to react more aggressively to these threats. For instance, deep-pocketed firms can adopt ag-

gressive competitive strategies to the detriment of rival firms (Bolton and Scharfstein, 1990).

Consistent with this idea, existing research shows that firms facing higher predation risk or

competitive threats hold more cash and liquid assets and pay lower dividends to create flexi-

bility. The strategic value of cash is greater in more competitive markets (Haushalter, Klasa,

and Maxwell, 2007; Fresard, 2010; Hoberg, Phillips, and Prabhala, 2014). Since automation

provides operating cost flexibility, we expect the impact to be greater on firms in more com-

petitive markets or those facing greater product market threats, as the strategic value of cost

flexibility will be higher for these firms.

First, we examine whether the impact of automation cost flexibility on firm value varies

with product market competition. We measure product market competition at the two-digit

SIC code level using the Herfindahl-Hirschman Index (HHI), a widely used measure for prod-

uct market competition (Giroud and Mueller, 2010; Valta, 2012). The HHI is defined as the

sum of squared market shares, computed using firms’ sales. Higher HHI levels indicate higher

industry concentration and, therefore, weaker product market competition. Since automation

lowers operating costs, automation cost flexibility should provide a strategic advantage, es-

pecially for firms in more competitive industries. To test this prediction, we split our sample

into two based on the annual median level of industry concentration in a given year.

The results in column 1 of Table 9 show that automation cost flexibility leads to higher firm
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values for firms in more competitive industries (the coefficient estimate on AF is 0.002 and

statistically significant at the 1% level), whereas there is no impact on firms in more concen-

trated industries (the coefficient estimate on ACF is 0.000 and insignificant). The difference

between these two coefficient estimates is also statistically significant (p-value = 0.025), sup-

porting the hypothesis that the positive impact of automation cost flexibility on firm value is

more pronounced for firms in more competitive industries, as these firms benefit more from a

decrease in operating costs.

[Table 9 about here.]

Knesl (2023) presents that firms with high share of displaceable labor have strong neg-

ative exposure to technology shocks and examines whether the impact of technology shocks

on financial performance differ between highly competitive and less competitive industries.

He presents evidence that industry competition increases the negative impact of technology

shocks on firms’ financial performance as automation becomes a costly necessity for firms and

erodes potential rents. Note that these results are not inconsistent with our findings of the

more pronounced positive impact of automation flexibility on firm value in more competitive

industries. Knesl (2023) specifically focuses on the transition of firms from labor-based to

capital-based production as a result of exogenous technology shocks and does not consider

staggered technology adoption whereas we do not analyze the impact of technological shocks

and we focus on how cost flexibility created by industrial robots impacts firm value.

We next investigate whether the impact of automation cost flexibility on firm value is more

pronounced for firms that face more competitive threats. To test this idea, we use the prod-

uct market fluidity measure developed by Hoberg et al. (2014), which captures competitive

threats and product market interactions. Hoberg et al. (2014) show that firms facing greater

product market fluidity are less likely to pay dividends or repurchase shares and hold higher

cash balances. We expect the positive impact of automation cost flexibility to be more pro-

nounced on firms with greater product market fluidity, as a decrease in operating costs can

provide more flexibility to firms in less stable markets.

In column 2 of Table 9, we divide the sample into terciles each year and assign firms in the
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lowest tercile and higher terciles to “low fluidity” and “high fluidity”, respectively. As shown,

automation cost flexibility creates higher firm values for firms facing greater product market

fluidity; the coefficient estimate on ACF is 0.001 and statistically significant at the 5% level

for these firms, while the coefficient estimate on ACF is zero and insignificant for firms with

low product market fluidity. The difference between these two coefficient estimates is also

statistically significant (p-value = 0.034).

To further test how competition and strategic interactions in product markets affect the

impact of automation cost flexibility on firm value, in column 3, we use the market leadership

turnover rate introduced by Dou, Ji, and Wu (2022). We expect the positive impact of au-

tomation cost flexibility to be more pronounced in industries with higher market leadership

turnover rates, as cost flexibility could create greater benefits for firms in industries with

greater competition for market leadership. We define a “high” market leadership turnover

indicator variable that equals one if any of the four largest firms ranked by sales in the two-

digit SIC industry in year t+1 are not among the four largest firms in year t; otherwise, it

takes a value of zero (categorized as “low” market leadership turnover). Consistent with our

prediction, automation cost flexibility creates a positive impact on firms that operate in indus-

tries with high market leadership turnover. Specifically, the coefficient on ACF is 0.003 and

statistically significant at the 5% level for firms in industries with high market leadership

turnover, whereas it is zero for firms in industries with low market leadership turnover (i.e.,

in industries with highly persistent market leadership). The difference between the coeffi-

cient estimates is also statistically significant at the 1% level.

We also examine variation in how automation cost flexibility affects firm value based on

firm size. As small firms are more likely to be financially constrained, we expect the decrease

in operating costs led by automation to create a more pronounced impact on smaller firms. To

test this prediction, we divide the sample firms into quartiles based on firm size (total firm

assets) each year and firms in the highest quartile are categorized as “big”, and those in the

lower quartiles are “small”.

As presented in column 4, automation cost flexibility creates a positive impact on firm

value for smaller firms. Specifically, the coefficient estimate on ACF is 0.002 and statistically
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significant at the 1% level, while it is zero and insignificant for bigger firms. The difference

between the coefficient estimates is also statistically significant at the 10% level. Overall, the

positive impact of automation flexibility appears mostly in smaller firms that are more likely

to be financially constrained, as these firms benefit more from a decrease in operating costs.

Finally, in column 5, we divide the sample firms into subsamples based on firm’s market

share each year and compare the firms in the highest quartile with the firms in the lower

quartiles. Market share is defined as the ratio of a firm’s sales to total industry sales at

the two-digit SIC level. We expect that cost flexibility led by automation will create greater

benefits for firms with lower market share in the industry, as a decrease in operating costs

might provide a greater competitive advantage for these firms. Consistent with our prediction,

automation cost flexibility creates a positive impact on firms with lower market shares in the

industry. The coefficient on ACF is 0.002 and statistically significant at the 1% level for firms

with low market shares, while it is zero and insignificant for firms with high market shares.

The difference between the coefficient estimates is also statistically significant (p-value =

0.021).27

Overall, the results in this section show that the positive impact of automation cost flexi-

bility appears mostly in firms that operate in more competitive industries, face greater threats

in their product markets, are in industries with greater strategic competition, and are more

likely to be financially constrained. These findings are consistent with the idea that cost

flexibility provides a strategic value.

6. Conclusion

This paper provides evidence for operating cost benefits of industrial robots. Specifically,

we find that industrial robots decrease a firm’s operating costs both in a sales-increasing and

sales-decreasing period. Motivated by an operating flexibility channel, we introduce a firm-

level measure of automation cost flexibility reflecting the importance of automation in a firm’s

27In Table IA.6 in the Internet Appendix, we estimate the results in Table 8 for firms in manu-
facturing industries (SIC codes between 2000-3999). We obtain similar findings for manufacturing
industries.
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ability to decrease its operating costs.

We investigate the firm-level characteristics of firms with differing levels of automation

cost flexibility. Specifically, firms with higher automation cost flexibility tend to have greater

operating cost flexibility, larger asset base, less cash holdings, and lower capital expenditures.

Furthermore, we match firms with a substantial increase in their automation cost flexibility

(treated) to firms with similar characteristics but without a comparable increase in automa-

tion cost flexibility (matched). Firms with a major jump in their automation cost flexibility

experience a decrease in their number of employees and an increase in their total operating

cost flexibility, whereas we do not observe a similar pattern across matched firms.

We then find that firms with greater automation cost flexibility exhibit higher firm value

(Tobin’s Q). To provide further causal link between automation cost flexibility and firm value,

we exploit the 2011 flooding in Thailand (Bates et al., 2024) as an exogenous shock for au-

tomation costs. We find that the positive impact of automation cost flexibility on firm value is

mitigated during the Thailand crisis, providing evidence of a causal component to our main

result.

This paper also examines the cross-sectional heterogeneities in the impact of automation

cost flexibility on firm values. The positive impact of automation flexibility on firm value

is more pronounced on firms that operate in more competitive industries, that face greater

threats in product markets, in industries with greater strategic competition, and smaller

firms. The magnified impact on these firms suggest that automation cost flexibility creates

strategic advantage to firms that face constant competitive threats in product markets and

firms that are more likely to be financially constrained.
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Fig. 1. Robotics growth

International Federation of Robotics (IFR) quantifies aggregate and industry-level
yearly robotics installation and operational robotics stock (number of robots currently
deployed). The IFR reports the country-level aggregate and industry-level robotics
usage data starting from 2004. This figure plots the number of aggregate and manu-
facturing industry based robotics installation (Panel A) and operational stock (Panel
B) from 2004 to 2021. The blue (red) lines plot the number of robotics usage at the
aggregate (manufacturing industry) level.

Panel A: Robotics installations

Panel B: Operational stock
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Fig. 2. Automation cost flexibility over time

This figure plots the selected cross-sectional moments (10th percentile, 25th per-
centile, 75th percentile, and 90th percentile) of automation cost flexibility (estimated
through Equations 3 and 4) from 2009 to 2021. By construction, the upper (lower) line
plots the movements in the 90th (10th) percentile, whereas the central lines sketch
the 75th and 25th percentiles.
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Fig. 3. Firm-level outcomes around the significant increase in ACF for ”treated” and matched
firms

This figure presents average employment and operating cost flexibility (OCF) for
”treated” and control firms in years relative to the significant increase in a firm’s ACF
measure for ”treated” firms. We define the firms that experience significant increase
in their ACF measure in a given year as the “treated” firms. We define significant in-
crease in ACF at the firm-level when a firm’s ACF is below -5 (close to 10th percentile
of ACF measure, Table 3) in year t-1, and it is above +5 (close to 90th percentile of
ACF measure, Table 3) in year t. To identify the set of candidate control firms, we
rank firms into five categories based on the standard deviation of annual changes in
their ACF measures and assign firms in the lowest rank as the set of candidate con-
trol firms. Then for each treated firm we choose its nearest neighbor from the group
of candidate control firms that operate in the same industry (two-digit SIC code) in
the same year. Firms are matched based on minimum Mahalanobis distance across
their size (the natural logarithm of total assets), capital expenditure over total asset,
age, leverage, cash holding, R&D intensity, profitability, sales growth, fixed asset to
total asset, and natural logarithm of number of employees. In Panel A, employment
is defined as the number of employees scaled by sales. In Panel B, operating cost flex-
ibility (OCF) is the sum the time series coefficients (β1+β2) estimated using equation
3 without the robotics terms as introduced by Chen et al. (2019).
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Table 1. Industry-based operational robotics stock

International Federation of Robotics (IFR) quantifies aggregate and industry-level
yearly robotics installation and operational robotics stock. While the IFR reports the
country-level aggregate industrial robotics installation and operational stock from
1993 onwards, it provides industry-level robotics usage data from 2004. In manufac-
turing, there is consistent data for a detailed set of 13 industries (roughly at the three-
digit level). Outside of manufacturing, there is consistent data in 3 broad industries
(roughly at the two-digit level). This table reports the industry names with available
robotics information, their main and parent International Standard Industrial Classi-
fication (ISIC) codes, and the selected moments of industry-level operational robotics
stock including the time-series average (mean), standard deviation (SD), minimum
(Min.), and maximum (Max.). The data period is from 2004 to 2021.

Industry ISIC codeParent code Mean SD Min. Max.
All industries 0 214,61964,562123,663340,785

-Manufacturing D 0 152,89491,040 13,110 294,917
—Food and beverages 10-12 D 7,997 5,512 628 19,512

—Textiles (including apparel) 13-15 D 98 114 0 355
—Wood and furniture 16 D 118 140 0 417
—Paper and printing 17-18 D 202 202 0 565

—Plastics and chemical products 19-22 D 13,802 7,830 1,146 26,374
—–Other chemical products 20-21 19-22 84 90 0 254

—–Rubber and plastic products (non-auto) 22 19-22 9,756 5,097 916 16,700
—Metals 24-28 D 14,745 8,519 1,378 29,297

—–Basic metals 24 24-28 4,071 4,884 0 14,748
—–Metal products (non-automotive) 25 24-28 8,647 2,909 1,378 12,122

—–Electrical and electronics 26-27 24-28 27,228 17,826 1,307 5,2237
—–Industrial machinery 28 24-28 2,022 1,927 0 5,484

—Automotive 29 D 80,947 43,596 8,651 141,855
—–Motor vehicles 291 29 42,838 20,763 4,701 66,486

—–Automotive parts 293 29 38,070 23,236 3,950 75,253
—–Automotive unspecified 299 29 38 52 0 116

—Other vehicles 30 D 435 449 0 1,341
—All other manufacturing branches 91 D 6,894 7,094 0 21,469

-Mining and quarrying C 0 20 22 0 57
-Construction F 0 128 126 0 410

-Education, research, and development P 0 599 624 0 1,854
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Table 2. The sensitivity of operating costs to changes in sales and industrial robots

This table reports the coefficient estimates of the following regression specifications:

log[
COSTSi,t

COSTSi,t−1

] = β0+β1 ∗ log[
SALEi,t

SALEi,t−1

]+β2 ∗Decrease−Dummyi,t ∗ log[
SALEi,t

SALEi,t−1

]

+β3 ∗ log[
ROBOTSj,t

ROBOTSj,t−1

]+β4 ∗Decrease−Dummyi,t ∗ log[
ROBOTSj,t

ROBOTSj,t−1

]+αj +αt+ ϵj,t

Subscripts i, j, and t denote firm, industry, and year, respectively. COSTSi,t refers
to operating costs (sum of COGS and SG&A expenses) incurred by firm i at year t,
SALEi,t corresponds to the sales revenue generated by firm i at year t, and ROBOTSj,t

refers to the total operational robotics stock of the industry j that firm i belongs to at
year t. Decrease−Dummyi,t is a dummy variable that takes a value of 1 if firm i’s sales
revenue decreases from time period t-1 to t, and 0 otherwise. Industry definitions
are based on two-digit SIC grouping. Standard errors that are heteroscedasticity-
consistent and clustered at the industry level are reported in parentheses beneath
coefficient estimates. *, **, and *** denote significance at the 10%, 5%, and 1% level,
respectively. The sample period is from 2005 to 2021.

Dependent variable: Logarithmic changes in costs

(1) (2) (3) (4)

β̂1 0.209** 0.216*** 0.215*** 0.207**

(0.08) (0.07) (0.07) (0.07)

β̂2 -0.015 -0.014 -0.018

(0.02) (0.02) (0.02)

β̂3 -0.074*** -0.017

(0.02) (0.03)

β̂4 -0.150***

(0.03)

β̂0 0.161*** 0.157*** 0.199*** 0.197***

(0.02) (0.02) (0.03) (0.03)

Industry F.E. Yes Yes Yes Yes

Year F.E. Yes Yes Yes Yes

N 20,905 20,905 20,905 20,905

R2 0.163 0.163 0.164 0.167
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Table 3. Summary statistics

This table reports the mean, standard deviation (SD), 10th percentile, 25th percentile,
75th percentile, and 90th percentile for three sets of variables. The first set is au-
tomation cost flexibility related variables: the primary automation cost flexibility
measure (ACF, estimated through Equations 3 and 4), β3 (the coefficient on the log-
arithmic changes in robots in Equation 3), and β4 (the coefficient on the interaction
term between the logarithmic changes in robots and the dummy variable indicating
sales-decreasing period). The second set of variables includes operating cost flexibil-
ity (OCF, equal to the sum of β1 and β2 estimated through Equation 3), β1, and β2.
The rest of the variables are Tobin’s Q and the independent variables that are used
as controls to estimate Tobin’s Q: size (natural logaritm of total assets), capital expen-
ditures scaled by assets (Capex/at), natural logarithm of firm age (Age), market lever-
age, cash scaled by assets (cash holdings), R&D expenses divided by the book value of
total assets (R&D intensity) , return on equity (Profitability), one-year-growth in sales
(Sales growth), the book value of property, plant, equipment, and inventory scaled by
the book value of total assets (Fixed asset/total asset), and the natural logarithm of
number of employees (LnEmployees).

Variables
Automation cost flexibility Mean SD p10 p25 p75 p90
ACF -0.037 19.213 -5.792 -0.914 0.636 4.957
β̂3 -0.705 268.430 -3.795 -0.455 0.665 4.905
β̂4 0.341 282.063 -3.470 -0.211 0.236 3.287

Operating cost flexibility
OCF 0.399 10.127 -1.859 -0.059 1.182 2.570
β̂1 0.817 148.649 -1.439 -0.035 1.149 2.330
β̂2 1.045 122.610 -3.042 -0.213 0.281 2.960

Other variables
Tobin’s Q 1.886 1.516 0.766 0.997 2.179 3.607
Size 6.089 2.905 2.422 4.251 8.050 9.737
Capex/at 0.060 0.084 0.001 0.010 0.075 0.152
Age 2.883 0.666 1.946 2.303 3.367 3.871
Leverage 0.254 0.256 0.000 0.033 0.391 0.657
Cash holdings 0.173 0.221 0.006 0.028 0.214 0.490
R&D intensity 0.093 0.321 0.000 0.000 0.030 0.273
Profitability -0.086 3.037 -0.901 -0.216 0.171 0.469
Sales growth 0.489 3.875 -0.430 -0.132 0.218 0.654
Fixed asset/total asset 0.800 0.862 0.039 0.204 1.098 1.598
LnEmployees 6.494 2.628 2.944 4.564 8.455 9.923
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Table 4. Firm characteristics sorted on automation cost flexibility

This table sorts firms based on their automation cost flexibility (ACF, estimated
through Equations 3 and 4) in every year and assigns them into tercile portfolios.
High (low) portfolio is the portfolio of firms with the highest (lowest) ACF. This ta-
ble reports the time-series average of the mean values of firm-specific characteris-
tics of ACF sorted portfolios including “OCF” operating cost flexibility measure pro-
posed by Chen et al. (2019), “Asset” book value of assets, “Emp” number of employees,
“Emp/sale” number of employees divided by sales, “Cash” cash holdings scaled by the
book value of assets, “Lev.” market leverage, “CapEx/at” capital expenditure divided
by the book value of total assets, “Tangibility” the ratio of property, plant, and equip-
ment to book value of total assets, and “Age” a firm’s age. The last row (High-Low)
report the differences in time-series averages of firm-specific characteristics between
firms in extreme (high vs. low) portfolios of automation cost flexibility. *, **, and ***
denote significance of the differences at the 10%, 5% and 1% level, respectively.

(1) (2) (3) (4) (5)

ACF OCF ASSET EMP EMP/SALE

Low -9.320 0.150 7012 6.249 0.020

Mid -0.037 0.694 9499 12.716 0.013

High 9.256 0.863 8259 7.879 0.018

High - Low 18.576*** 0.713*** 1247*** 1.630*** -0.003

(6) (7) (8) (9) (10)

CASH LEV CAPEX/AT TANGIBILITY AGE

Low 0.182 0.259 0.072 0.915 20.484

Mid 0.165 0.238 0.046 0.596 25.587

High 0.172 0.265 0.063 0.889 20.986

High - Low -0.010** 0.006 -0.009*** -0.026* 0.502**
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Table 5. Automation cost flexibility and firm value

This table presents the impact of automation cost flexibility (ACF) on firm value by
estimating the following equation:

Tobin′s Qit = β1 × ACF it + γX it + αi + αt + ϵit

Subscripts i, and t denote firm, and year, respectively. αi and αt are firm and year
fixed effects, respectively. X is a matrix of control variables as described in Section
2. The construction of firm-level ACF measure is provided in Section 3. Operating
cost flexibility (OCF) measure is the sum of the time series coefficients (β1 + β2) in
Equation 3 as introduced by Chen et al. (2019). SLAC is substitutability of labor with
automated capital as introduced by Bates et al. (2024). We set SLAC to zero when it
is missing for our sample of firms. In columns 5 and 7, HighFlex is a dummy vari-
able which is equal to one if a firm’s ACF measure is in the first or second terciles of
the yearly sample distribution, and zero otherwise. All continuous variables are win-
sorized at the 0.5% level. Standard errors that are heteroscedasticity-consistent and
clustered at the firm level are reported in parentheses beneath coefficient estimates.
*, **, and *** denote significance at the 10%, 5% and 1% level, respectively.

Dependent variable: Tobin’s Q
(1) (2) (3) (4) (5) (6) (7)

ACF 0.001***0.001***0.001***0.001*** 0.001***
(0.00) (0.00) (0.00) (0.00) (0.00)

HighFlex 0.034* 0.040**
(0.02) (0.02)

OCF 0.000
(0.00)

Ln(change in robots) -0.019
(0.10)

SLAC 0.006
(0.08)

CapEx/book asset 0.673***0.673***0.673***0.673***0.677***0.626***0.630***
(0.17) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17)

Size -0.524***-0.524***-0.524***-0.524***-0.524***-0.508***-0.508***
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Age -0.113 -0.114 -0.114 -0.114 (0.11) (0.12) (0.12)
(0.12) (0.12) (0.12) (0.12) (0.12) (0.10) (0.10)

Leverage -0.955***-0.955***-0.955***-0.955***-0.954***-0.920***-0.920***
(0.08) (0.08) (0.08) (0.08) (0.08) (0.07) (0.07)

Cash holdings 0.337***0.337***0.337***0.337***0.339***0.423***0.426***
(0.12) (0.12) (0.12) (0.12) (0.12) (0.11) (0.11)

R&D intensity 0.542***0.542***0.542***0.542***0.544***0.562***0.564***
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Profitability 0.000 0.001 0.001 0.001 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Sales growth -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Fixed asset/total asset 0.040 0.040 0.040 0.040 0.040 0.050 0.050
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

LnEmployees 0.186***0.186***0.186***0.186***0.186***0.185***0.184***
(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02)

Firm F.E. Yes Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes Yes
N 12,851 12,851 12,851 12,851 12,851 14,124 14,124
R2 0.865 0.865 0.865 0.865 0.865 0.856 0.856
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Table 6. Automation cost flexibility and firm value: Difference-in-differences
regression for firm value after significant increase in a firm’s ACF measure

This table presents the estimates from the following difference-in-differences regres-
sion:

Tobin′s Qit = β1 × TreatAfterit + γX it + αi + αt + ϵit

Subscripts i, and t denote firm, and year, respectively. αi and αt are firm and year
fixed effects, respectively. X is a matrix of control variables as described in Section 2.
The sample comprises “treated” and matched firms. TreatAfter is a dummy variable
equal to one for treated firms for the five years following the significant increase in
their ACF measure. We define the firms that experience significant increase in their
ACF measure in a given year as the ”treated” firms. We define significant increase in
ACF at the firm-level when a firm’s ACF is below -5 (close to 10th percentile of ACF
measure, Table 3) in year t-1, and it is above +5 (close to 90th percentile of ACF mea-
sure, Table 3) in year t. To identify the set of candidate control firms, we rank firms
into five categories based on the standard deviation of annual changes in their ACF
measures and assign firms in the lowest rank as the set of candidate control firms.
Then for each treated firm we choose its nearest neighbor from the group of candidate
control firms that operate in the same industry (two-digit SIC code) in the same year.
Firms are matched based on minimum Mahalanobis distance across their size (the
natural logarithm of total assets), capital expenditure over total asset, age, leverage,
cash holding, R&D intensity, profitability, sales growth, fixed asset to total asset, and
natural logarithm of number of employees. All continuous variables are winsorized at
the 0.5% level. Standard errors that are heteroscedasticity-consistent and clustered
at the firm level are reported in parentheses beneath coefficient estimates. *, **, and
*** denote significance at the 10%, 5% and 1% level, respectively.

Dependent variable: Tobin’s Q
(1)

TreatAfter 0.134**
(0.06)

CapEx/book asset 0.851**
(0.38)

Size -0.437***
(0.07)

Age -0.075
(0.14)

Leverage -0.692***
(0.16)

Cash holdings 0.956***
(0.23)

R&D intensity 0.419***
(0.12)

Profitability -0.008
(0.01)

Sales growth 0.002
(0.00)

Fixed asset/total asset -0.005
(0.07)

LnEmployees 0.104**
(0.04)

Firm F.E. Yes
Year F.E. Yes
N 4,000
R2 0.826
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Table 7. The impact of the 2011 Thailand hard drive crisis

This table presents the impact of the 2011 Thailand hard drive crisis. The construc-
tion of firm-level ACF measure is provided in Section 3. Flooding is defined using two
different alternatives. Specifically, Flooding is a dummy variable which is equal to
one in year 2011, and zero otherwise (columns 1 and 3). Alternatively, following Bates
et al. (2024), Flooding is equal to one for firms in industries with higher probability
of computerization (based on median value), estimated by Osborne and Frey (2013);
Frey and Osborne (2017) based on occupational characteristics and technological de-
velopments, in year 2011 and zero otherwise (columns 2 and 4). In columns 3 and 4,
firm-level ACF measure is fixed to 2009 value for years between 2005 to 2009. The
detailed definitions of control variables are provided in Section 2. All continuous vari-
ables are winsorized at the 0.5% level. Standard errors that are heteroscedasticity-
consistent and clustered at the firm level are reported in parentheses beneath coef-
ficient estimates. *, **, and *** denote significance at the 10%, 5% and 1% level,
respectively.

Dependent variable: Tobin’s Q
(1) (2) (3) (4)

ACF 0.001*** 0.001*** 0.001*** 0.001***
(0.00) (0.00) (0.00) (0.00)

Flooding 0.020 -0.080 -0.061 -0.135**
(0.04) (0.06) (0.06) (0.06)

Flooding x ACF -0.003* -0.010** -0.003** -0.011**
(0.00) (0.05) (0.00) (0.05)

CapEx/book asset 0.672*** 0.673*** 0.625*** 0.627***
(0.17) (0.17) (0.17) (0.17)

Size -0.524*** -0.525*** -0.508*** -0.508***
(0.05) (0.05) (0.05) (0.05)

Age -0.114 -0.112 -0.12 -0.119
(0.12) (0.12) (0.10) (0.10)

Leverage -0.956*** -0.955*** -0.921*** -0.919***
(0.08) (0.08) (0.07) (0.07)

Cash holdings 0.336*** 0.337*** 0.422*** 0.423***
(0.12) (0.12) (0.11) (0.11)

R&D intensity 0.542*** 0.542*** 0.562*** 0.562***
(0.08) (0.08) (0.08) (0.08)

Profitability 0.001 0.001 0.001 0.001
(0.00) (0.00) (0.00) (0.00)

Sales growth -0.001 -0.001 -0.001 -0.001
(0.00) (0.00) (0.00) (0.00)

Fixed asset/total asset 0.040 0.040 0.050 0.050
(0.04) (0.04) (0.04) (0.04)

LnEmployees 0.186*** 0.186*** 0.185*** 0.185***
(0.03) (0.03) (0.02) (0.02)

Firm F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
N 12,851 12,851 14,124 14,124
R2 0.865 0.865 0.856 0.856
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Table 8. The 2011 Thailand hard drive crisis: Dynamics

This table presents the dynamic effect of the 2011 Thailand hard drive crisis. The
construction of firm-level ACF measure is provided in Section 3. Before-1 to -3 is a
dummy variable equal to one if it is 1 to 3 years before the Thailand shock (years
2010, 2009, and 2008), Current0 is a dummy variable equal to one for the year 2011
indicating the Thailand flooding, and After1 to 2 is equal to one if it is 1 or 2 years after
the Thailand shock (years 2012, and 2013). In columns 2 and 4, following Bates et al.
(2024), Before-1 to -3, Current0, and After1 to 2 dummy variables are equal to one for the
same years for firms in industries with higher probability of computerization (based
on median value), estimated by Osborne and Frey (2013); Frey and Osborne (2017)
based on occupational characteristics and technological developments, and zero oth-
erwise. In columns 3 and 4, firm-level ACF measure is fixed to 2009 value for years
between 2005 to 2009. The detailed definitions of control variables are provided in
Section 2. All continuous variables are winsorized at the 0.5% level. Standard errors
that are heteroscedasticity-consistent and clustered at the firm level are reported in
parentheses beneath coefficient estimates. *, **, and *** denote significance at the
10%, 5% and 1% level, respectively.

Dependent variable: Tobin’s Q
(1) (2) (3) (4)

ACF 0.001*** 0.001*** 0.001*** 0.001***
(0.00) (0.00) (0.00) (0.00)

Before-1 to -3 -0.032*** -0.004 0.011* -0.001
(0.09) (0.10) (0.06) (0.08)

Current0 -0.030*** -0.009 -0.006 -0.014**
(0.08) (0.07) (0.06) (0.07)

After1 to 2 -0.019*** -0.003 0.005 -0.004
(0.06) (0.05) (0.07) (0.05)

Before-1 to -3 x ACF -0.003 0.005 -0.002 0.016
(0.00) (0.01) (0.00) (0.02)

Current0 x ACF -0.003** -0.010** -0.003** -0.011**
(0.00) (0.05) (0.00) (0.05)

After1 to 2 x ACF -0.001 0.001 -0.001 0.000
(0.00) (0.00) (0.00) (0.00)

Controls Yes Yes Yes Yes
Firm F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
N 12,851 12,851 14,124 14,124
R2 0.866 0.865 0.856 0.856

55



Table 9. The cross-sectional variation in the impact of automation cost flexibility
on firm value

This table reports estimates of ACF from a series estimation of Equation 5, and
presents how industry competition, product market fluidity, market leadership
turnover, firm size, and firm’s market share are related to the impact of automation
cost flexibility on firm value. The construction of firm-level ACF measure is provided
in Section 3. In column 1, sample firms are split into two subsamples based on the an-
nual median value of industry concentration in a given year. Industry concentration
is measured by HHI (Herfindahl- Hirschman index), which is computed as the sum of
squared market shares of all firms in a given two-digit SIC industry. Market shares
are computed based on firms’ sales. In column 2, firms that are in the lowest tercile
of the yearly sample distribution based on fluidity measure are compared to those
in higher terciles. Product market fluidity measure is from Hoberg et al. (2014). In
column 3, firms are divided based on market leadership turnover indicator. Market
leadership turnover rate is defined as high if any of the largest four firms ranked by
sales in the two-digit SIC industry in year t+1 is none of the four largest firms in year
t. In columns 4 and 5, firms that are in the highest quartile of the yearly sample dis-
tribution based on size and market share are compared to those in the lower quartiles,
respectively. Firm size is defined as total assets. Firm’s market share is defined as
the ratio of firm’s sales to total industry sales at the two-digit SIC level. The detailed
definitions of control variables are provided in Section 2. All continuous variables are
winsorized at the 0.5% level. Standard errors that are heteroscedasticity-consistent
and clustered at the firm level are reported in parentheses beneath coefficient esti-
mates. The p-values for the difference between coefficient estimates are calculated
using seemingly unrelated regressions. *, **, and *** denote significance at the 10%,
5% and 1% level, respectively.

Dependent variable: Tobin’s Q
Competition Fluidity Market turnover Size Market share

(1) (2) (3) (4) (5)
Subsample 1 Competitive High High Small Low
ACF 0.002*** 0.001** 0.003** 0.002*** 0.002***

(0.00) (0.00) (0.00) (0.00) (0.00)
N 7,374 4,123 4,925 7,236 6,956
R2 0.870 0.793 0.887 0.864 0.862
Subsample 2 Non-competitive Low Low Big High
ACF 0.000 0.000 0.000 0.000 0.000

(0.00) (0.00) (0.00) (0.00) (0.00)
N 5,477 3,085 7,926 5,615 5,895
R2 0.844 0.860 0.890 0.874 0.854
p-value of difference 0.025 0.034 0.004 0.054 0.021
Controls Yes Yes Yes Yes Yes
Firm F.E. Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes

56



Internet Appendix

Automation Cost Flexibility and
Firm Value



Table IA.1. The sensitivity of operating costs to changes in sales and industrial robots:
Manufacturing firms

This table reports the coefficient estimates of the following regression specifications as in
Table 2 for firms in manufacturing industries (SIC codes between 2000-3999):

log[
COSTSi,t

COSTSi,t−1
] = β0 + β1 ∗ log[

SALEi,t

SALEi,t−1
] + β2 ∗Decrease−Dummyi,t ∗ log[

SALEi,t

SALEi,t−1
]

+ β3 ∗ log[
ROBOTSj,t

ROBOTSj,t−1
] + β4 ∗Decrease−Dummyi,t ∗ log[

ROBOTSj,t

ROBOTSj,t−1
] + ϵj,t

Subscripts i, j, and t denote firm, industry, and year, respectively. COSTSi,t refers to operating
costs (sum of COGS and SG&A expenses) incurred by firm i at year t, SALEi,t corresponds to
the sales revenue generated by firm i at year t, and ROBOTSj,t refers to the total operational
robotics stock of the industry j that firm i belongs to at year t. Decrease − Dummyi,t is a
dummy variable that takes a value of 1 if firm i’s sales revenue decreases from time period
t-1 to t, and 0 otherwise. Industry definitions are based on two-digit SIC grouping. Standard
errors that are heteroscedasticity-consistent and clustered at the industry level are reported
in parentheses beneath coefficient estimates. *, **, and *** denote significance at the 10%,
5%, and 1% level, respectively. The sample period is from 2005 to 2021.

Dependent variable: Logarithmic changes in costs

(1) (2) (3) (4)

β̂1 0.128** 0.146*** 0.146*** 0.138***

(0.04) (0.04) (0.04) (0.04)

β̂2 -0.043** -0.042** -0.048***

(0.01) (0.01) (0.01)

β̂3 -0.061* -0.004

(0.03) (0.03)

β̂4 -0.162***

(0.02)

β̂0 0.146*** 0.137*** 0.182*** 0.182***

(0.02) (0.02) (0.02) (0.02)

Industry F.E. Yes Yes Yes Yes

Year F.E. Yes Yes Yes Yes

N 12,327 12,327 12,327 12,327

R2 0.147 0.149 0.150 0.159

1
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Table IA.3. Automation cost flexibility and firm value: Manufacturing firms

This table presents the impact of automation cost flexibility (ACF) on firm value by estimating
the following equation as in Table 5 for firms in manufacturing industries (SIC codes between
2000-3999):

Tobin′s Qit = β1 ×ACF it + γX it + αi + αt + ϵit

Subscripts i, and t denote firm, and year, respectively. αi and αt are firm and year fixed effects,
respectively. X is a matrix of control variables as described in Section 2. The construction of
firm-level ACF measure is provided in Section 3. Operating cost flexibility (OCF) measure is
the sum of the time series coefficients (β1 + β2) in Equation 3 as introduced by Chen et al.
(2019). SLAC is substitutability of labor with automated capital as introduced by Bates et al.
(2024). In columns 5 and 7, HighFlex is a dummy variable which is equal to one if a firm’s
ACF measure is in the first or second terciles of the yearly sample distribution, and zero
otherwise. All continuous variables are winsorized at the 0.5% level. Standard errors that
are heteroscedasticity-consistent and clustered at the firm level are reported in parentheses
beneath coefficient estimates. *, **, and *** denote significance at the 10%, 5% and 1% level,
respectively.

Dependent variable: Tobin’s Q
(1) (2) (3) (4) (5) (6) (7)

ACF 0.002***0.003***0.002***0.002*** 0.003***
(0.00) (0.00) (0.00) (0.00) (0.00)

HighFlex 0.050* 0.052**
(0.03) (0.03)

OCF 0.001
(0.00)

Ln(change in robots) -0.307***
(0.11)

SLAC 0.070
(0.10)

CapEx/book asset 1.084***1.087***1.074***1.090***1.108***0.779** 0.789**
(0.38) (0.38) (0.38) (0.38) (0.38) (0.34) (0.34)

Size -0.424***-0.424***-0.425***-0.424***-0.425***-0.399***-0.401***
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Age -0.119 -0.120 -0.121 -0.128 -0.112 -0.053 -0.050
(0.16) (0.16) (0.16) (0.16) (0.16) (0.12) (0.12)

Leverage -1.449***-1.449***-1.453***-1.449***-1.451***-1.368***-1.369***
(0.12) (0.12) (0.12) (0.12) (0.12) (0.11) (0.11)

Cash holdings 0.137 0.137 0.134 0.138 0.140 0.200 0.200
(0.13) (0.14) (0.14) (0.14) (0.14) (0.13) (0.13)

R&D intensity 0.637***0.638***0.636***0.639***0.639***0.645***0.647***
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Profitability 0.000 0.000 -0.001 0.000 0.000 0.000 0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Sales growth -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Fixed asset/total asset 0.004 0.004 0.006 0.002 0.000 0.040 0.040
(0.07) (0.07) (0.07) (0.07) (0.07) (0.06) (0.06)

LnEmployees 0.151***0.151***0.152***0.150***0.151***0.148***0.148***
(0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03)

Firm F.E. Yes Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes Yes
N 7,575 7,575 7,575 7,575 7,575 8,273 8,273
R2 0.863 0.863 0.863 0.863 0.862 0.859 0.859
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Table IA.4. The impact of the 2011 Thailand hard drive crisis: Manufacturing firms

This table presents the impact of the 2011 Thailand hard drive crisis as in Table 6 for manu-
facturing firms. The construction of firm-level ACF measure is provided in Section 3. Flooding
is defined using two different alternatives. Specifically, Flooding is a dummy variable which
is equal to one in year 2011, and zero otherwise (columns 1 and 3). Alternatively, following
Bates et al. (2024), Flooding is equal to one for firms in the top tercile of industries based
on the probability of computerization, estimated by Frey and Osborne (2013, 2017) based on
occupational characteristics and technological developments, in year 2011 and zero otherwise
(columns 2 and 4). In columns 3 and 4, firm-level ACF measure is fixed to 2009 value for
years between 2005 to 2009. The detailed definitions of control variables are provided in Sec-
tion 2. All continuous variables are winsorized at the 0.5% level. Standard errors that are
heteroscedasticity-consistent and clustered at the firm level are reported in parentheses be-
neath coefficient estimates. *, **, and *** denote significance at the 10%, 5% and 1% level,
respectively.

Dependent variable: Tobin’s Q
(1) (2) (3) (4)

ACF 0.003*** 0.002*** 0.003*** 0.003***
(0.00) (0.00) (0.00) (0.00)

Flooding -0.006 -0.121 -0.089 -0.127
(0.04) (0.14) (0.06) (0.11)

Flooding x ACF -0.006*** -0.269*** -0.006*** -0.330***
(0.00) (0.08) (0.00) (0.06)

CapEx/book asset 1.080*** 1.093*** 0.778** 0.789**
(0.38) (0.38) (0.34) (0.34)

Size -0.424*** -0.424*** -0.400*** -0.400***
(0.05) (0.05) (0.05) (0.05)

Age -0.117 -0.117 -0.052 -0.052
(0.16) (0.16) (0.12) (0.12)

Leverage -1.451*** -1.449*** -1.369*** -1.368***
(0.12) (0.12) (0.11) (0.11)

Cash holdings 0.138 0.136 0.202 0.200
(0.13) (0.13) (0.13) (0.13)

R&D intensity 0.637*** 0.637*** 0.645*** 0.645***
(0.08) (0.08) (0.08) (0.08)

Profitability 0.000 0.000 -0.001 -0.001
(0.00) (0.00) (0.00) (0.00)

Sales growth -0.001 -0.001 -0.001 -0.001
(0.00) (0.00) (0.00) (0.00)

Fixed asset/total asset 0.000 0.000 0.040 0.040
(0.07) (0.07) (0.06) (0.06)

LnEmployees 0.152*** 0.152*** 0.148*** 0.148***
(0.04) (0.04) (0.03) (0.03)

Firm F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
N 7,575 7,575 8,273 8,273
R2 0.863 0.863 0.859 0.859

4



Table IA.5. Dynamic impact of the 2011 Thailand hard drive crisis: Manufacturing firms

This table presents the dynamic effect of the 2011 Thailand hard drive crisis as in Table 7 for
manufacturing firms. The construction of firm-level ACF measure is provided in Section 3.
Before-1 to -3 is a dummy variable equal to one if it is 1 to 3 years before the Thailand shock
(years 2010, 2009, and 2008), Current0 is a dummy variable equal to one for the year 2011
indicating the Thailand flooding, and After1 to 2 is equal to one if it is 1 or 2 years after the
Thailand shock (years 2012, and 2013). In columns 2 and 4, following Bates et al. (2024),
Before-1 to -3, Current0, and After1 to 2 dummy variables are equal to one for the same years for
firms in the top tercile of industries based on the probability of computerization, estimated
by Frey and Osborne (2013, 2017) based on occupational characteristics and technological
developments, and zero otherwise. In columns 3 and 4, firm-level ACF measure is fixed to
2009 value for years between 2005 to 2009. The detailed definitions of control variables are
provided in Section 2. All continuous variables are winsorized at the 0.5% level. Standard
errors that are heteroscedasticity-consistent and clustered at the firm level are reported in
parentheses beneath coefficient estimates. *, **, and *** denote significance at the 10%, 5%
and 1% level, respectively.

Dependent variable: Tobin’s Q

(1) (2) (3) (4)

ACF 0.003*** 0.003*** 0.003*** 0.003***

(0.00) (0.00) (0.00) (0.00)

Before-1 to -3 -0.358*** -0.004 -0.063 -0.151

(0.10) (0.31) (0.06) (0.19)

Current0 -0.363*** -0.142 -0.089 -0.177

(0.09) (0.16) (0.06) (0.11)

After1 to 2 -0.159** -0.02 0.124 -0.016

(0.08) (0.07) (0.08) (0.07)

Before-1 to -3 x ACF -0.001 0.308 -0.002 0.029

(0.00) (0.33) (0.00) (0.20)

Current0 x ACF -0.006*** -0.233*** -0.006*** -0.332***

(0.00) (0.07) (0.00) (0.04)

After1 to 2 x ACF -0.001 -0.005*** -0.001 -0.006***

(0.00) (0.00) (0.00) (0.00)

Controls Yes Yes Yes Yes

Firm F.E. Yes Yes Yes Yes

Year F.E. Yes Yes Yes Yes

N 7,575 7,575 8,273 8,273

R2 0.863 0.863 0.859 0.859
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Table IA.6. The cross-sectional variation in the impact of automation cost flexibility on
firm value: Manufacturing firms

This table reports estimates of ACF from a series estimation of Equation 5, and presents
how industry competition, product market fluidity, market leadership turnover, firm size, and
firm’s market share are related to the impact of automation flexibility on firm value as in Table
8 for manufacturing firms. The construction of firm-level ACF measure is provided in Section
3. In column 1, sample firms are split into two subsamples based on the annual median
value of industry concentration in a given year. Industry concentration is measured by HHI
(Herfindahl- Hirschman index), which is computed as the sum of squared market shares of
all firms in a given two-digit SIC industry. Market shares are computed based on firms’ sales.
In column 2, firms that are in the lowest tercile of the yearly sample distribution based on
fluidity measure are compared to those in higher terciles. Product market fluidity measure
is from Hoberg et al. (2014). In column 3, firms are divided based on market leadership
turnover indicator. Market leadership turnover rate is defined as high if any of the largest
four firms ranked by sales in the two-digit SIC industry in year t+1 is none of the four largest
firms in year t. In columns 4 and 5, firms that are in the highest quartile of the yearly sample
distribution based on size and market share are compared to those in the lower quartiles,
respectively. Firm size is defined as total assets. Firm’s market share is defined as the ratio
of firm’s sales to total industry sales at the two-digit SIC level. The detailed definitions of
control variables are provided in Section 2. All continuous variables are winsorized at the
0.5% level. Standard errors that are heteroscedasticity-consistent and clustered at the firm
level are reported in parentheses beneath coefficient estimates. The p-values for the difference
between coefficient estimates are calculated using seemingly unrelated regressions. *, **, and
*** denote significance at the 10%, 5% and 1% level, respectively.

Dependent variable: Tobin’s Q
Competition Fluidity Market turnover Size Market share

(1) (2) (3) (4) (5)
Subsample 1 Competitive High High Small Low
ACF 0.003*** 0.003*** 0.005*** 0.003*** 0.003***

(0.00) (0.00) (0.00) (0.00) (0.00)
N 3,881 2,790 3,050 3,760 4,485
R2 0.840 0.758 0.878 0.855 0.850
Subsample 2 Non-competitive Low Low Big High
ACF 0.001 -0.001* 0.001 0.001 0.001

(0.00) (0.00) (0.00) (0.00) (0.00)
N 3,694 2,369 4,525 3,815 3,090
R2 0.894 0.875 0.897 0.882 0.884
p-value of difference 0.046 0.001 0.002 0.021 0.023
Other controls Yes Yes Yes Yes Yes
Firm F.E. Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes
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